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ABSTRACT

Deep convolutional neural networks (CNNs) have shown revolu-
tionary performance improvements for matching cost computation
in stereo matching. However, conventional CNN-based approaches
to learn the network in a supervised manner require a large num-
ber of ground-truth disparity maps, which limits their applicabil-
ity. To overcome this limitation, we present a novel framework to
learn a CNNs architecture for matching cost computation in an un-
supervised manner. Our method leverages an image domain learning
combined with stereo epipolar constraints. Exploiting the correspon-
dence consistency between stereo images as supervision, our method
selects the training samples in each iteration during network training
and uses them to learn the network. To boost the performance, we
also propose a multi-scale cost computation scheme. Experimental
results show that our method outperforms the state-of-the-art meth-
ods including even supervised learning based methods on various
benchmarks.

Index Terms— stereo matching, matching cost, similarity
learning, unsupervised learning, convolutional neural networks

1. INTRODUCTION

Establishing dense correspondence fields across stereo images is es-
sential for numerous tasks such as stereo reconstruction, autonomous
driving, robotics, intermediate view generation, and 3D scene recon-
struction [1, 2, 3]. To estimate reliable correspondences, the match-
ing cost computation to measure the dissimilarity between stereo im-
ages is one of the most important steps in stereo matching [1].

Conventionally, hand-crafted features were mainly used to de-
fine the matching cost [4, 5, 6, 7]. Since they have provided a lim-
ited performance due to the lack of robustness, most methods have
attempted to refine the estimated disparity using a powerful opti-
mizer or post processing scheme [8]. Recently, by leveraging convo-
lutional neural networks (CNNs) [3, 9, 10], many approaches have
reformulated the matching cost function in a learning framework,
where the network is learned to estimate a reliable disparity map. As
a pioneering work, Zbontar et al. proposed a MC-CNN architecture
[3] to discriminate the positive sample pairs from a large number of
training samples, thus enabling robust matching cost computation in
stereo matching. It showed a highly improved performance com-
pared to conventional hand-crafted methods [4].

To provide satisfactory performances, these supervised learning
approaches require a large number of ground-truth disparity maps.
However, constructing the large collection of ground truths is a very
challenging work even with equipment such as structured light [11]
and LiDAR [12]. Thus, currently, there exist few stereo datasets that
have a limited number of disparity maps [11, 12]. To overcome this
limitation, unsupervised learning approaches to monocular depth es-
timation have been proposed where they do not require ground truth

Fig. 1. Our unsupervised learning framework with siamese CNNs.
To train siamese CNNs, we leverage an image domain learning com-
bined with stereo epipolar constraints. At the loss layer, it selects the
training samples using a correspondence consistency and discrimi-
nant sample mining, and the gradients of loss for these samples are
back-propagated to learn the network.

disparity maps to train the network [13, 14]. However, they still show
a limited performance compared to supervised learning approaches
[3, 9, 10], and only show better performance than existing monocular
depth estimation methods [15, 16, 17].

In this paper, we propose a novel framework to train the CNN
architecture that computes the matching cost for stereo matching
in an unsupervised manner, as shown in Fig. 1. Unlike unsuper-
vised monocular depth estimation methods [13, 14], we formulate
the problem as a feature matching task, where the network is used
to build a feature to compute the matching cost explicitly. Our
key-ingredient is to use an image domain learning combined with
stereo epipolar constraint. We leverage the inherent correspondence
consistency between images as supervision for the training. Our
approach selects training samples in each iteration during network
training, and exploits those samples to learn the network. Further-
more, we propose a training sample mining scheme to boost the
training performance and convergence rate. In the testing procedure,
we propose a multi-scale cost computation to boost the matching
performance. Experimental results show that our unsupervised
learning based framework shows the state-of-the-art performance
even against the supervised learning based method [3] on various
benchmarks such as the Middlebury benchmark [11] and KITTI
benchmark [12].

2. PROPOSED METHOD

2.1. Problem Formulation and Overview
Let us define a rectified pair of stereo images I , I ′ such that
I(i), I ′(i) : I → R

3 for the pixel i = [ix, iy]
T , where I ⊂ N

2 is a
discrete image domain. Given stereo images I , I ′, stereo matching
aims at estimating a disparity map D(i) for each pixel i by establish-



ing correspondences, satisfying I(ix, iy) = I ′(ix −D(i), iy). To
estimate the disparity among disparity candidates d = {1, ..., dmax},
where dmax is the maximum disparity range, the matching cost is first
measured between I(ix, iy) and I ′(ix − d, iy), and then determined
by a winner-takes-all (WTA) strategy.

To measure the similarity between pixels, CNNs based feature
vectors have shown a satisfactory performance [3, 9, 10]. Generally,
it formulates the matching cost function in a learning framework in
a way that feature vector through feed-forward process on an image
F(I;W), where W is a network parameter, is used to measure the
matching cost. These methods train the CNNs that make the positive
samples to be more similar and the negative samples to be more dis-
similar in the feature space of F(I;W). However, it still contains
the limitation with the lack of ground-truth disparity map, and it is
very challenging work to construct the large collection.

To overcome the above problem, we propose a method to learn
the matching cost network without a supervision of ground truth dis-
parity map. Unlike conventional methods [3, 9, 10] using patch-level
training samples, our approach formulates the image domain learn-
ing framework as in [18]. It estimates the tentative positive sam-
ples by exploiting the inherent correspondence consistency between
stereo images using epipolar geometry constraints. Specifically, to
estimate the tentative positive samples in each iteration of network
training, convolutional activation A(i) = F(I(i);W) is first used
as a feature to find the initial correspondences, and positive sam-
ples are then selected through correspondence consistency. With
these positive samples in each iteration, the network parameter is
gradually learned with an evolving iteration. Since even initial ran-
dom parameter can provide enough number of positive samples, our
learning framework guarantees convergence.

2.2. Positive Set Sampling via Correspondence Consistency
In this section, we introduce the framework for positive set sampling
between stereo images in an unsupervised manner, followed by dis-
criminant training sample mining.

2.2.1. Initial disparity map computation

To leverage the correspondence consistency between stereo images,
initial disparity maps of stereo images should be built. To this end,
the matching cost function C(i, d) is first measured as the dissim-
ilarity between convolutional activations of stereo images such that
A(i) = F(I(i);W) and A′(i) = F(I ′(i);W), followed by a sim-
ple L2 distance:

C(i, d) =
∥∥A(ix, iy)−A′(ix − d, iy)

∥∥2
, (1)

where it is defined for all pixel i ∈ I and all disparity candidates d =
{1, ..., dmax}. With these cost volume C, the disparity map is then
estimated by finding the minimum matching cost across disparity
search ranges in a WTA manner such that

D(i) = argmind C(i, d). (2)

By computing the initial disparity maps D(i) and D′(i) from
left image I(i) and right image I ′(i), respectively, the positive sam-
ples can be selected though correspondence consistency, which will
be described in the following section. It should be noted that conven-
tionally, hand-crafted kernel-based methods [4, 5, 6] have shown an
acceptable performance to provide the initial disparity map. Since
convolutional activation A = F(I;W) also can be considered as
the feature through multiple kernel convolutions, convolutional acti-
vations A enable us to estimate enough number of positive samples,

(a) (b) (c) (d)

Fig. 2. Visualizations of positive set sampling using correspondence
consistency during network training: (a) input left and right image,
(b) estimated initial disparity maps, positive sample sets through
(c) correspondence consistency check only, and (d) correspondence
consistency check with discriminant training sample mining.

even with Gaussian random values of W in an initialization. Fig.
2(b) shows the initial disparity map estimated with random parame-
ters, which shows an acceptable performance. We will show quali-
tative evaluation of our network with randomly initialized parameter
in Sec. 3. By evolving the iteration during training, the network
parameter is gradually learned to estimate the reliable disparity map.

2.2.2. Correspondence consistency check

In stereo matching, most existing methods inherently assume that
the pixels in left image have at most one matched pixel in right im-
age across epipolar line [1]. Thus, the correspondence match from
the left image to the right image should be consistent with that from
the right image to the left image. Conventionally, such a correspon-
dence consistency is popularly used to eliminate the erroneous dis-
parities in post processing step [3, 19]. Unlike this, in our approach,
we incorporate this correspondence consistency into loss function,
where the tentative positive samples are determined in each iteration
of training. Since the reliability of positive samples after the corre-
spondence consistency is proved [20, 21, 18], these samples can be
helpful cues to train the network in an unsupervised manner.

Specifically, with estimated disparity maps D and D′ for left
and right images, we can determine the positive samples that satisfy
the following condition:

∥∥D(ix, iy)−D′(ix −D(i), iy)
∥∥2 ≤ t, (3)

where t is a threshold parameter. We then discard inconsistent pixels.
Fig. 2(c) shows determined positive samples.

2.2.3. Discriminant training sample mining

The positive samples through the correspondence consistency might
be distributed in all image domain. However, when training the
network for measuring the dissimilarity, most positive samples on
homogeneous regions cannot contribute the performance boosting.
Furthermore, erroneous positives rather degrade the performance.
To alleviate these limitations, we employ the training sample min-
ing scheme, where the color and gradient constraints are used to
eliminate the positive samples on homogeneous or erroneous regions
and further hard positive samples are determined according to their
matching cost.

First of all, to ensure the positive samples as reliably matched
pixels, a color similarity constraint is used with an assumption that
the matched pixels have similar color values such that

∥∥I(ix, iy)− I ′(ix −D(i), iy)
∥∥2 ≤ c, (4)



where c is a threshold parameter.
Secondly, to prevent the positive samples to be selected on ho-

mogeneous regions, we simply eliminate the samples with small gra-
dient such that

‖�xI(ix, iy)‖ ≤ g, (5)

where �x is a differential operator defined in the x-direction, and g
is a threshold parameter. Since a disparity map is estimated across
search ranges in the x-direction, a large gradient in the x-direction
can be a reliable cue to select structural distinctive positive samples.

Finally, among training samples, hard positive samples are de-
termined, which can boost the performance and convergence rate.
Specifically, hard positive samples are determined from the samples
that have high matching costs, which are hard to be estimated as
positive samples. After these training sample mining steps, the final
training sample set such that Ω are determined through feed-forward
process, as shown in Fig. 2(d).

2.3. Network Architecture
In this paper, we exploit a fast version of the network architecture as
in [3] which has shown the state-of-the-art performance. It consists
of 4 or 5 convolutional layers depending on datasets, followed by
rectified linear units (ReLUs) except for the last convolutional layer.
Furthermore, a channel-wise L2 normalization layer is used as the
last layer. For all convolutional layers, depth of convolutional kernel
is 64 and convolution kernel size is 3.

The loss layer contains all procedure of correspondence consis-
tency check, color and gradient constraint based mining, and hard
positive mining. With determined training samples, the two kinds of
loss function can be employed, correspondence contrastive loss and
correspondence cross-entropy loss. Correspondence contrastive loss
is to train the network by minimizing the regression loss [3, 22, 18],
which makes the positive samples to be more similar and the neg-
ative samples to be more dissimilar. Correspondence cross-entropy
loss [10] is to train the network in a way that the positive samples
are classified properly among all disparity candidates.

2.3.1. Correspondence contrastive loss

Since our method is defined in the image domain, the loss function
is also defined in the image domain. For training the network with
stereo image pairs, the correspondence contrastive loss is defined as

L(W) =
1

2N

∑
i∈Ω

l(i)‖F(I(i);W)−F(I ′(i′);W)‖2+
(1− l(i))max(0,M − ‖F(I(i);W)−F(I ′(i′);W)‖2),

(6)

where l(i) denotes a class label that is 1 for a positive pair and 0
otherwise. N is the number of training samples. M is the maximal
cost. Following [3], the negative samples are obtained by shifting
the positive samples with some margin in a x-direction such that
i′x = ix−D(i)+oi where oi is chosen from the interval of allowed
negative offset.

2.3.2. Correspondence cross-entropy loss

We further propose correspondence cross-entropy loss that allows to
computing a softmax loss for each pixel across all possible dispar-
ities. Specifically, for each pixel i and its possible disparity candi-
dates, correspondence cross-entropy loss is defined such that

L(W) = − 1

2N

∑
i∈Ω

∑
k
PT(k; i) log(P (k; i)), (7)

(a) (b) (c) (d)

Fig. 3. Qualitative evaluations of multi-scale cost computation us-
ing two loss functions: (a) left input image and ground truth dispar-
ity map, estimated disparity maps using (top) correspondence con-
trastive loss and (bottom) correspondence cross-entropy loss with (b)
s = 1 (Error: 17.26% and 15.63%), (c) s = 1/2 (Error: 12.92% and
12.49%), and (d) s ∈ {1, 1/2} (Error: 11.89% and 11.05%).

where k is defined for all possible disparities such that kx = {ix −
1, ..., ix − dmax}. PT (k; i) is a label, which is defined as 1 if kx =
ix−D(i), and 0 otherwise. Furthermore, P (k; i) is a softmax prob-
ability defined such that

P (k; i) =
exp(U − ‖F(I(i);W)−F(I ′(k);W)‖2)∑
l exp(U − ‖F(I(i);W)−F(I ′(l);W)‖2) , (8)

where l is defined for all possible disparities such that lx = {ix −
1, ..., ix − dmax} similar to k. We convert the matching cost to the
similarity score with the constant U , which is set as 1 empirically.

2.4. Multi-scale Cost Computation
Given stereo images, we compute the matching cost by measuring
the similarity between Ai = F(I(i);W) and A′

i = F(I ′(i);W)
with the learned network parameter W. To further boost the match-
ing performance, we propose multi-scale cost computation scheme,
where the matching cost volumes are first built in a multi-scale man-
ner, and then fused to estimate a final disparity map. It should be
noted that in objection segmentation [23] or detection [24], multi-
scale cost computation schemes have shown improved performance.

Based on share-net [9], we first build an image pyramid with
multiple scale s ∈ {1, 1/2, ..., (1/2)S−1}, where S is the number
of scales. An image at each scale, Is, is passed through the network,
and the matching cost volume is built at each scale such that Cs(i, d)
where the maximum disparity range is also reduced as d = {1, ..., s ·
dmax}. To combine the matching cost, each matching cost volume
Cs(i, d) is resized to have the same resolution of original image. We
use the bilinear interpolation to upsample the spatial resolution and
duplicate the matching cost across disparities. Finally, we average
multiple cost volumes to estimate final cost volume and determine
the final disparity map.

3. EXPERIMENTAL RESULTS AND DISCUSSION

3.1. Experimental Settings
In our experiments, we implemented our network using the VLFeat
MatConvNet toolbox[25]. We set all the initial network parameters
as Gaussian random variable. We trained the network by minimiz-
ing two kinds of loss functions with stochastic gradient descent back
propagation. For the hyperparameters we use, we set the thresh-
old parameter for correspondence t to 3 and for the gradient g to
0.0625. The color constraint c was set to 0.02 and 0.13 and the in-
terval of offset oi to (2, 6) and (4, 10) for the Middlebury [11] and



Fig. 4. Comparison of qualitative evaluation on the Middlebury [11]:
(from left to right, from top to bottom) Left and right input image,
ground-truth disparity map, estimated disparity maps using census
[4], MC-CNN [3], our network with initial parameter, correspon-
dence contrastive loss, and correspondence cross-entropy loss.

Fig. 5. Comparison of qualitative evaluation on the KITTI [12]:
(from left to right, from top to bottom) Left and right input image,
ground-truth disparity map, estimated disparity maps using census
[4], MC-CNN [3], our network with initial parameter, correspon-
dence contrastive loss, and correspondence cross-entropy loss.

KITTI [12] dataset as [3]. For both training and testing, we put the
gray-scale image as an input. We compared our method with con-
ventional hand-crafted features, census [4], and supervised CNNs
based method, fast version of MC-CNN [3], on various benchmarks:
Middlebury [11] as the concatenation of 2005 and 2006 version for
a total of 27 images and KITTI [12] as 2012 version for a total of
194 images. We randomly split the dataset as training set and test set
and trained our network only with training set and calculated quali-
tative evaluation on test set. For quantitative evaluation, we utilized
the bad pixel error rates in non-occluded regions with 2- and 3-pixel
margins. Furthermore, we evaluated our method with randomly ini-
tialized parameters.

3.2. Middlebury Benchmark
We first evaluated the effects of multi-scale cost computation in our
learning framework on Middlebury stereo dataset [11] as shown in
Fig. 3. The single-scale with s = 1 tends to preserves the fine
detail, but has noises in low-textured region. On the single-scale
with s = 1/2 shows more smooth results, but comes at risk of los-
ing details. Our proposed multi-scale method with s ∈ {1, 1/2},
S = 2, shows better performance compare to results of the single-
scale, which shows more smooth result while preserving fine details.
Moreover, Fig. 4 shows qualitative results of our method compared
to state-of-the-art methods. Interestingly, our unsupervised learning
outperforms even supervised learning based method.

Table 1. Comparison of quantitative evaluation on Middlebury [11]
and KITTI [12]. We refer to our network with an initial parameter as
’Ours init.’, with correspondence contrastive loss as ’Ours reg.’ and
with correspondence cross-entropy loss as ’Ours cls.’.

Error rates(%)
Middlebury [11] KITTI [12]
> 2 px > 3 px > 2 px > 3 px

Census [4] 32.53 30.72 49.14 45.82
MC-CNN [3] 17.51 16.63 22.65 20.22

Ours init.
Single 20.79 18.93 30.90 29.40
Multi 19.39 17.27 16.55 14.79

Ours reg.
Single 18.51 17.11 28.26 25.87
Multi 16.83 15.22 14.99 12.56

Ours cls.
Single 17.98 16.88 24.31 21.90
Multi 16.81 15.08 14.46 11.96

Fig. 6. Comparison of qualitative evaluation on KITTI [12] through
post-processing steps: (from left to right, from top to bottom) Left
input image, ground-truth disparity map, estimated disparity maps
using census [4], MC-CNN [3], our network with correspondence
contrastive loss and correspondence crossentropy loss.

3.3. KITTI Benchmark
We then evaluated our learning framework on KITTI stereo dataset
[12] as shown in Fig. 5. Table 1 shows average error rates on Mid-
dlebury [11] and KITTI [12] dataset. Thanks to robustness of corre-
spondence cross-entropy loss in an unsupervised manner and multi-
scale cost computation, our method has shown the state-of-the-art
performance compared to census [4] and MC-CNN [3] on various
benchmarks.

Finally, we employed a common series of post-processing step
as in [3], which consist of semiglobal matching, interpolation, sub-
pixel enhancement and refinement as shown in Fig. 6, which also
provides the reliable performance of our method.

4. CONCLUSION

We have presented the unsupervised learning framework for train-
ing the CNN architecture to compute the matching cost. To train the
network as an unsupervised manner, we formulated the image do-
main learning combined with stereo epipolar constraint. We lever-
aged the correspondence consistency between stereo images as su-
pervision for network training. With training sample mining scheme
and multi-scale cost computation, the performance of the network
could be boosted. Without using ground truth disparity map, pro-
posed method has outperformed the state-of-the-art method with su-
pervised approaches on various benchmarks.
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