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Abstract—Recent deep networks based methods have achieved
state-of-the-art performance on a variety of emotion recognition
tasks. Despite such progress, previous researches on affective
computing to estimate human-centric emotion have mainly fo-
cused on analyzing color recording videos only. However, complex
emotion having dynamic facial expression, lighting conditions
and various skin colors can be fully-understood by integrating
information from multiple modality videos. We present a novel
method that estimates dimensional emotion states taking color,
depth, and thermal recording videos as inputs which could be
complementary to each other. Our networks, termed as tri-
modal recurrent attention networks (TRAN), learn spatiotem-
poral attention cubes to robustly recognize the emotion based
on attention-boosted feature cubes. We leverage the depth and
thermal sequences as guidance priors and transfer the guid-
ance attention cubes from guidance stream to color stream for
selectively focusing on emotional discriminative regions within
facial videos. We also introduce a novel benchmark for tri-
modal emotion recognition, called TAVER, which consists of
color, depth, and thermal recording videos with continuous
arousal-valence score. The experimental results show that our
method can achieve the state-of-the-art results in dimensional
emotion recognition on exsiting color recording datasets including
RECOLA, SEWA, and our TAVER datasets.

Index Terms—Tri-modal Emotion Recognition, Dimensional
(Continuous) Emotion Recognition, Attention Mechanism

I. INTRODUCTION

UNDERSTANDING human emotions from visual con-
tents has attracted significant attention in numerous

affective computing and computer vision applications such
as health [1], personal assistance robots [2], and many other
human-computer interaction systems [3].

There are two major emotion recognition models according
to theories in psychology research [4]: categorical models and
dimensional models. Most efforts in emotion recognition [5]–
[9] have focused on categorical emotion description, where
emotions are grouped into discrete categories such as surprise,
fear, etc. In the last few years, several methods have tried
to recognize the six basic emotions [5]–[11]. Although the
state-of-the-art methods have shown satisfactory performance
in categorical emotion recognition, those six basic emotions do
not cover the full range of possible emotions, which hinders
the application of emotion recognition methods to practical
systems.

Jiyoung Lee, Sunok Kim and Kwanghoon Sohn are with the School of
Electrical and Electronic Engineering, Yonsei University, Seoul, Korea. E-
mail: {easy00, kso428, khsohn}@yonsei.ac.kr
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Fig. 1. Illustration of TRAN: using tri-modal facial videos including color,
depth, and thermal videos, TRAN recognizes dimensional emotion.

To alleviate these limitations, dimensional emotion descrip-
tions [8], [12]–[15] have attracted much attention, where emo-
tions are described in a continuous space, consisting of two
representative domains, called Arousal and Valence. Arousal
represents how engaged or apathetic a subject appears while
valence represents how positive or negative a subject appears.
Those models can represent more complex and subtle emo-
tions with the higher-dimensional descriptions compared to the
categorical emotion description. Some researches proposed to
estimate dimensional emotion state based on still frames [13],
[14]. These methods effectively extract spatial information but
fail to model the variability of emotion expression in temporal
factors. Thus, researchers have tried to capture the dynamic
variation from consecutive frames based on hand-crafted [16]
or learned features [8], [15].

On the other hand, there have been attempts to recongnize
human emotion through vaious signals such as face, voice,
and biological signal to improve the estimation accuracy of
emotional state [16]–[18]. In this paper, we focus on recogniz-
ing human emotion through fusion of multiple modalities with
heterogeneous characteristics such as color, depth, and thermal
information. Researchers in affective computing have used
depth sensors and 3D models to improve facial feature tracking
and expression recognition [19], [20]. Although there are
several facial expression databases that include 3D data [19],
[21], they are all based on 3D model, not including thermal
information. Moreover, thermal sensor has also been used for
these tasks [22], [23] due to the reason of its sensitivity to
human’s skin temperature and relative insensitivity to lighting
conditions and skin color. Nevertheless, previous works have
mainly utilized the temperature information as a single modal-
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ity. Most recently, Zheng et al. [21] has built multi-modal 3D
dynamic benchmark including the thermal video. However, it
was annotated for categorical emotion labels, not dimensional
domains.

In this paper, we present a novel framework, called tri-modal
recurrent attention networks (TRAN), to estimate dimensional
human emotion by exploiting not only a color recording video
but also depth and thermal recording videos in a joint and
boosting manner, as illustrated in Fig. 1. The key ingredient
of this approach is to seek the spatio-temporal attention part
by leveraging complementary tri-modal information and use
this for dimensional emotion recognition. The proposed net-
work consists of four sub-networks; spatial encoder networks,
temporal decoder networks, attention inference networks, and
emotion recognition networks. First of all, we extract facial
features by spatial encoder networks with spatial associations.
In temporal decoder networks, we adaptively fuse the tri-
modal input features to learn ‘where’ and ‘what’ to attend
guided by information from other modalities. To this end,
we propose a guided attention long-short term momory (GA-
LSTM) module that learns emotionally attentive faical parts
both spatially and temporally with tri-modal facial videos.
Temporally-stacked feature cubes are multiplied with esti-
mated attention cubes to make attention-boosted feature cubes
in attention inference networks. Lastly, the emotion recogni-
tion networks are formulated using successive 3D convolu-
tional neural networks (3D-CNNs) to deal with the sequential
data for recognizing dimensional emotion scores.

In addition, we build a new tri-modal database including
color, depth and thermal videos for the dimensional emotion
recognition task, termed as tri-modal arousal-valence emotion
recognition database (TAVER). To the best of our knowl-
edge, it is the first publicly available dataset for dimensional
emotion recognition based on tri-modalities facial videos.
By focusing on discriminative parts of facial with tri-modal
videos, the proposed emotion recognition technique achieves
the state-of-the-art performance on the tri-modal benchmark
such as the TAVER and various uni-modal benchmarks such
as RECOLA [24] and SEWA [25].

This manuscript extends the conference version of this
work [26] through (1) a tri-modal extension of URAN, called
TRAN; (2) an introduction of novel database, called TAVER
and (3) an extensive comparative study with state-of-the-art
CNN-based methods using various datasets.

The rest of this paper is organized as follows. We discuss the
related work in Sec. II and describe our emotion recognition
algorithm in Sec. III. We introduce the novel TAVER bench-
mark in Sec. IV. Sec. V presents the details of our experiments
and Sec. VI concludes this paper.

II. RELATED WORKS

A. Emotion Recognition Methods

There have been numerous approaches to recognize humans
emotion which can be described into two ways: categorical
models and dimensional models. A large portion of the previ-
ous research has focused on recognizing categorical emotions,
where emotions are grouped into discrete categories [11],

[27], [28]. Although these approaches can recognize humans
emotion with high accuracy, the categorical emotion model has
limitation that does not cover the full range of humans emo-
tion. As an alternative way to model emotions, dimensional
approaches have been proposed [8], [12]–[15], where humans
emotion can be described using a low-dimensional signal.

Recently, deep convolutional neural networks have been
shown to substantially outperform previous approaches in
various applications such as face recognition [29], facial point
detection [30], and face verification [31] with extraction of
more discriminative features. Meanwhile, the dynamic emo-
tion recognition models have also highly benefited with the
advent of deep CNNs leveraging various types of deep CNNs
such as Time-Delay, recurrent neural networks (RNN), and
LSTM networks [32]–[34]. In the field of categorical emotion
recognition, Ebrahimi et al. [35] combined CNNs and RNNs to
recognize categorical emotions in videos. The networks were
first trained to classify emotion from static images, then the
extracted features from the CNNs were used to train RNNs to
estimate emotion for the whole video. Dynamic and dimen-
sional models have also been considered in [36], [37]. He et
al. [37] used deep bidirectional LSTM architecture for the
fusion of multimodal features to dimensional affect prediction.
While [38] used static methods to make the initial affect
predictions at each time step, it used particle filters to make
the final prediction. Similarly, Khorrami et al. [36] showed
the possibility that combination of CNNs and RNNs could
improve the performance of dimensional emotion recognition.
However, most works for dynamic and dimensional emotion
recognition have been relied on color recording videos, and
thus they have limited ability to exploit complementary tri-
modal information.

B. Emotion Recognition Benchmarks

Most databases that deal with emotion recognition [39]–
[42] were recorded by color cameras, although they posed a
challenge to affective computing due to various characteristics
from age, gender and skin color of people. It may yield limited
performance to apply the system in practical applications. In
this regards, capturing spontaneous expression has become
a trend in the affective computing community. For example,
recording the responses of participants’ faces while watching
a stimulti (e.g., DISFA [43] and AM-FED [44]) or performing
laboratory-based emotion inducing tasks (e.g., Belfast [45]).
These databases often capture multiple attributes such as
voice, biological signals, etc. Sequences of frames are usually
captured that enable researchers to work on temporal and
dynamic aspects of expressions.

Many researchers have developed databases for the di-
mensional model in the continuous domain from controlled
setting [24], [45]–[47] to wild setting [25], [42]. The Belfast
database [45] contains recordings of mild to moderate emo-
tional responses of 60 participants to a series of laboratory-
based emotion inducing tasks (e.g., surprise response by
setting off a loud noise when the participant is asked to
find something in a black box.) The recordings were labeled
by information on self-report of emotion, the gender of the
participant/experimenter, and the valence in the continuous
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domain. The arousal dimension was not annotated in Belfast
database. The participants reported their arousal and valence
through the self-assessment manikin (SAM) [46] questionnaire
before and after the tasks. Audio-Visual Emotion recognition
Challenge (AVEC) series of competitions [16], [18], [48] have
provided benchmarks of automatic audio, video and audio-
visual emotion analysis in dimensional emoition recognition,
where SEMAINE, RECOLA, and SEWA benchmarks were
included. Various dimensions of emotion recognition were
explored in each challenge year such as valence, arousal,
expectation, power, and dominance, where the prediction of
valence and arousal are studied in all challenges.

Although there are several emotion recognition databases
based on 3D data [19], [20], [49], they are all based on posed
behavior and typically include few subjects, little diversity,
limited ground-truth labels, and limited metadata. Recently,
Zheng et al. [21] has built multi-modal 3D dynamic bench-
mark including thermal video. However, it was annotated for
categorical emotion labels and AUs, not dimensional domains.

C. Multi-spectral Fusion

It is desirable to leverage multi-modal information to over-
come the limitations of color recording visual contents in vari-
ous computer vision applications such as image dehazing, im-
age denoising, pedestrian detection, and human body segmen-
tation, providing complementary information [50]–[54]. For
example, Feng et al. [50] proposed an image dehazing method
by modeling a dissimilarity between color and NIR images.
The NIR image was used as a guidance image in image denois-
ing applications [52] and as a supplementary data in pedestrian
detection systems [51], [53]. Kim et al. [52] leveraged CNNs
to enhance a noisy RGB image using a aligned NIR image
via alternating minimization. Park et al. [53] simultaneously
fused each distinctive color and NIR features to get optimal
performance. Incorporating visible images and other spectral
images into a high-level framework provides complementary
information and improves the performance. Palmero et al. [54]
proposed human body segmentation dataset including color,
depth, and thermal modalities in indoor scenarios to segment
human subjects automatically in tri-modal video sequences
based on learning-based fusion strategies.

D. Attention Inference

Attention is widely known as playing an important role in
human perception system [55]. One important property of a
human visual system is that one does not attempt to process
a whole scene at once. Instead, humans exploit a sequence
of partical glimpses and selectively focus on salient parts in
order to capture the better visual structure [56].

Recently, there have been several attempts to incorporate
attention processing to improve the performance of CNNs
in image classification and object detection tasks [57]–[60].
Wang et al. [57] proposed residual attention networks for
generation of attention-aware feature maps. By leveraging
global average pooling layer, Zhou et al. [58] built class
activation maps in CNNs. Hu et al. [59] introduced a squeeze-
and-excitation module to exploit the inter-channel relationship.

Woo et al. [60] simultaneously estimated spatial and channel
attention with convolutional block attention module (CBAM).

Previous attention-based techniques using recurrent modules
have estimated the attention by stack of LSTM modules [61],
[62]. For example, Jia et al. [62] has proposed the extension
of LSTM model, called gLSTM, for image caption generation.
Although they employ temporal information, they cannot
take a spatial correlation into consideration. To alleviate this
limitation, Li et al. [63] have employed ConvLSTM to predict
the spatiotemporal attention, but they fail to predict a pixel-
level attention due to the lack of mechanism to deconvolutional
ConvLSTM modules. Moreover, there exists no attempt to
fuse tri-modal information within ConvLSTM modules. For
incorporating attention mechanism to dimensional emotion
recognition, we consider spatiotemporal facial attention that
selectively focuses on emotionally sailent parts by aggregating
tri-modal facial videos.

III. PROPOSED METHOD

A. Problem Formulation and Overview

Formally, given a tri-modal facial video clip composed
of three sequences, i.e., color recording sequences I , depth
recording sequences D, and thermal recording sequences F ,
the objective of our approach is to recognize a dimensional
emotion score (e.g., arousal or valence) y ∈ [−1, 1] for each
input {I,D, F}.

Concretely, to estimate human emotion for the tri-modal
facial video clip, we adopt a strategy that frame-wise attention
maps are first extracted. Attention-boosted features are then
used for emotion recognition. We present a novel learnable
network that implicitly estimates tri-modal recurrent attentions
for the video. We formulate encoder-decoder module in the tri-
modal recurrent attention network, where an encoder module
consists of convolution layers to extract the features with spa-
tial associations of each frame and a decoder module consists
of GA-LSTM layers followed by sequential upsampling layers
to estimate spatiotemporal attention cubes. To fuse tri-modal
information within the recurrent network, the hidden states on
each module are connected each other. We further build an
emotion recognition network to estimate continuous emotion
scores by leveraging 3D-CNNs to encode both spatial and
temporal information simultaneously with tri-modal recurrent
attention. The configuration of the overall framework is de-
picted in Fig. 2.

B. Network Architecture

In this section, we describe the details of tri-modal recurrent
attention networks (TRAN) and its unimodal version. Since
there is lack of supervision for spatio-temporal attentions of
facial videos, we design TRAN in an end-to-end manner
where the attention can be learned implicitly during learning
the emotion recognition module with the supervision of a
continuous emotion label only.

1) Spatial Encoder Networks: To extract features from each
frame, we build the spatial encoder networks consisting of 2D
convolutional layers and max-pooling layers. Since tri-modal
input such as color, depth, and thermal have heterogeneous
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Fig. 2. The network configuration of TRAN which consists of four sub-networks, including spatial encoder networks, temporal decoder networks, attention
inference networks, and emotion recognition networks. Given color, depth, and thermal facial videos, TRAN estimates the attention cubes and then recognizes
output valence scores. Especially, red lines indicate temporal connection between GA-LSTM in the color stream and A-LSTM in depth and thermal streams.
The detail of GA-LSTM module is illustrated in Fig. 3.

properties, we formulate the tri-modal encoder networks and
temporally share the parameters of each network to extract
common discriminative properties. Formally, we extract con-
volutional feature maps xI , xD, and xF corresponding to
color I , depth D, and thermal F in input sequences within
the siamese network [64], where the weights and biases of
each kernel are shared (i.e., replicated across all frames from
same streams and updated together during training phase but
not shared across spectral streams), enabling us to reduce the
number of parameters and prevent the over-fitting problem.

The spatial encoder networks consist of successive 3 × 3
convolution layers and rectified linear unit (ReLU) layers,
followed by max-pooling layers with stride 2× 2.

2) Temporal Decoder Networks: We design the temporal
decoder networks with stacked guided attention ConvLSTM
(GA-LSTM) layers followed by upsampling layers that make
the resolution of attention map same to the input features.
Specifically, for input features xI , xD, and xF from the spatial
encoder networks, the temporal decoder networks predict a
spatiotemporal attention cube corresponding the feature acti-
vation of color XI to focus more relevant parts.

In depth and theraml streams, we build the temporal decoder
networks with basic ConvLSTM modules [65], termed as
attention LSTM (A-LSTM). Two guided streams have con-
volutional structures in both input-to-state and state-to-state
transitions to maintain a spatial locality in the cell state while
encoding the temporal correlation. Given input features xt−1
at time step (t−1) from each stream, the ConvLSTM module
updates as follows

it = σ(wxi ∗ xt + whi ∗ ht−1 + wci ∗ ct−1 + bi),
ft = σ(wxf ∗ xt + whf ∗ ht−1 + wcf ∗ ct−1 + bf ),
ct = ft � ct−1 + it � tanh(wxc ∗ xt + whc ∗ ht−1 + bc),
ot = σ(wxo ∗ xt + who ∗ ht−1 + wco � ct + bo),
ht = ot � tanh(ct),

(1)
where it, ft, ot, ct and ht represent the input gate, forget
gate, output gate, cell activation, and cell output at time t,

respectively. They are composed of 3D convolutional acti-
vations. ∗ denotes the convolution operator and � denotes
the Hadamard product. w is the filter connecting different
gates, and b is the corresponding bias vector. The recurrent
connections only operate over the temporal dimension, and use
local convolutions to capture spatial context. However, original
ConvLSTM module does not fully exploit the reciprocal
information contained in the tri-modal videos.

Due to heterogeneous characteristics of tri-modal input, the
direct fusion of these tri-modal input does not provide the
optimal performance [54]. To fuse outputs of ConvLSTM
modules across tri-modal streams with learnable modules, we
thus extend existing ConvLSTM module in a way that the
hidden states of each spectral stream are connected to guide
the attention estimation in a boosting fashion. Specifically,
given tri-modal features xIt , xDt , and xFt , the guided attention
ConvLSTM (GA-LSTM) module updates at time step t as
follows:

it =σ(wxi ∗ xIt +
∑

g
wg

hi ∗ h
g
t−1 + wci ∗ ct−1 + bi),

ft =σ(wxf ∗ xIt +
∑

g
wg

hf ∗ h
g
t−1 + wcf ∗ ct−1 + bf ),

ct =ft � ct−1 + it � tanh(wxc ∗ xIt +
∑

g
wg

hc ∗ h
g
t−1 + bc),

ot =σ(wxo ∗ xIt +
∑

g
wg

ho ∗ h
g
t−1 + wco � ct + bo),

hIt =ot � tanh(ct),
(2)

where g ∈ {I,D, F} and hg are hidden features from tri-
modal streams, e.g., color, depth, and thermal streams.
Namely, hD and hF are hidden features from A-LSTM
modules and hI is a hidden feature from GA-LSTM module.
The key challenge in tri-modal recurrent attention networks is
how to borrow comlementary information from each other. As
hidden states in conventional LSTM modules are represented
by taking the previous hidden states and current inputs, it
can be leveraged as frame-level output [63]. Likewise, we
use hidden states of depth and thermal streams as guidance
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Fig. 3. Illustration of the proposed GA-LSTM module. Red lines indicate
temporally additional connections. By considering the hidden activations in A-
LSTM as extra inputs in GA-LSTM, we encourage TRAN to exploit attention
map following temporal tri-modal guidances.

information for color stream to predict attention maps. To
exploit the inter relationships between hidden representations
from tri-modal input, we adopt weighted aggregating hidden
states of other A-LSTM outputs to combine the information
from each modality as shown in Fig. 3. Thus, the hidden
representations from one time step of depth and thermal
domain will be fed into target domain, i.e.color, at the next
time step for refinement of attention.

The temporal decoder networks consist of successive 3× 3
kernel in both A-LSTM and GA-LSTM modules and tanh [65].
Furthermore, we progressively enlarge the spatial resolution of
stacked feature activations through sequential deconvolutions
similar to [64]. We build the sequence of deconvolution with
a factor of 2 after each LSTM module. Note that unlike other
deconvolution layers as in [64], we utilize the proposed recur-
rent modules that encode the temporal correlation across inter-
frames while preserving the spatial structure over sequences.

3) Attention Inference Networks: The tri-modal recurrent
attentions are combined with input features as a soft atten-
tion in a manner that the attention is multiplied to feature
activations of color frames. The attention maps obtained by
the GA-LSTM module are normalized using spatial softmax
function as follows:

At,i =
exp(Ht,i)∑
j exp(Ht,j)

, (3)

where Ht,i is the hidden state and At,i is an attention cube
for each location i ∈ {1, · · · , H × W} and time step t ∈
{1, · · · , T}.

4) Emotion Recognition Networks: We design emotion
recognition networks to recognize final dimensional emotion
states from attention-boosted features. Unlike exsting emotion
recognition methods that consider the facial expression in a
static image only [8], [36], we aim to simultaneously encode
spatial and temporal cues. Specifically, by leveraging the
multi-spectral recurrent attention A1:T , our method produces
attention boosted features for target modality, i.e., color. While
the 2D-CNNs [36] can be used to predict the emotion for the
facial video, it processes multiple input frames as different
input channels independently, thus providing limited perfor-
mances. To overcome this limitation, we employ the 3D-CNNs
to deal with temporal information, which simultaneously con-
sider spatial and temporal correlations across the input frames
and directly regress the emotion.

TABLE I
NETWORK CONFIGURATION OF TRAN.

Spatial Encoder Networks
Layer Kernel Ch I/O Input Output
conv1 3× 3 3/32 I conv1
pool1 2× 2 32/32 conv1 pool1
conv2 3× 3 32/64 pool1 conv2
pool2 2× 2 64/64 conv2 pool2
conv3 3× 3 64/128 pool2 conv3
pool3 2× 2 128/128 conv3 pool3

Temporal Decoder Networks
Layer Kernel Ch I/O Input Output
lstm1 3× 3 128/64 pool3 lstm1
up1 2× 2 64/64 lstm1 up1
lstm2 3× 3 64/32 up1 lstm2
up2 2× 2 32/32 lstm2 up2
lstm3 3× 3 32/1 up2 A

Attention Inference Networks
Layer Kernel Ch I/O Input Output
conv1 3× 3× 3 3/32 I X′

Emotion Recognition Networks
Layer Kernel Ch I/O Input Output
conv1 3× 3× 3 32/32 X′′ conv1
pool1 2× 2× 2 32/32 conv1 pool1
conv2 3× 3× 3 32/64 pool1 conv2
pool2 2× 2× 2 64/64 conv2 pool2
conv3 3× 3× 3 64/128 pool2 conv3
pool3 2× 2× 2 128/128 conv3 pool3
conv4 3× 3× 3 256/256 pool3 conv4
pool4 2× 2× 2 256/256 conv4 pool4
fc1 − 9216/1024 pool4 fc1
fc2 − 1024/1 fc2 y

To elegantly incorporate the spatiotemporal attention to
emotion recognition through 3D-CNNs, we extract convolu-
tional feature activation X ′ using 3D convolutional layers for
the color video I as an input. Then, we multiply spatiotem-
poral attention A to across the feature X ′ to estimate the
attention-boosted feature activations as follows:

X ′′ = A�X ′, (4)

where � denotes the Hadamard product and X ′′ is a fi-
nal refined feature map. Note that the pipeline for emotion
recognition with the 3D-CNNs is inspired by the recognition
networks in action recognition [66], because 3D-CNNs is well
suited for spatiotemporal feature learning [66] owing to 3D
convolution and 3D pooling layers.

By leveraging the attention-boosted feature cubes X ′′, our
method then estimates a dimensional emotion scores y with
3D-CNNs [66] to simultaneously encode spatial and temporal
information. Temporally stacked attentive feature cube pass
the three 3D convolutional layers and 3D pooling layers which
have 3×3×3 kernels and 2×2×2 kernels, respectively. Table I
summarizes the overall network configuration of TRAN. The
last fully-connected layer has a single output channels as f
and we use a linear regression layer to estimate the output
valence. We use tanh activation function followed by the last
fully-connected layer that limits the range of output estimator
to [−1, 1].

5) Uni-modality Model: TRAN described so far can be
simplified in a uni-modal framework, called Uni-modal Re-
current Attention Networks (URAN), to recognize human
emotion from color recording videos only. In the networks,
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all GA-LSTM modules are replaced with A-LSTM modules.
Because our two types of models can be applied to various
type of visual signals capturing facial expression, TRAN and
URAN can be utilized for various environments.

C. Loss Function

During training, we minimize a mean squared error between
estimated labels and given ground-truth labels. Given a col-
lection of mini-batch M training sequences, a mean squared
error criterion is adoped, defined as follows:

L =
1

M

M∑
m=1

‖ŷm − ym‖2, (5)

where ŷm and ym are ground-truth valence label and predic-
tion of the proposed method, respectively. TRAN is learned
only with a ground-truth valence label as a supervision. Note
that our method does not need explicit pre-defined AUs [67]
and salient facial regions (e.g., facial landmarks). All param-
eters in TRAN can be implicitly learned using a stochastic
gradient descent scheme.

IV. TAVER BENCHMARK

Most existing emotion recognition datasets [24], [25], [42],
[45]–[47] have focused on the color image analysis, and thus
they cannot be used for tri-modal emotion recogntion. In
this section, we introduce a new benchmark for dimensional
emotion recognition from tri-modal input such as color, depth,
and thermal.

A. Data Acquisition

1) Recording System Setup and Synchronization: The data
capture system included Microsoft Kinect v2 with time-of-
flight sensor 1 and FLIR A65 thermal imaging temperature
sensor as shown in Fig. 4. We used Microsoft Kinect v2
to obtain RGB and depth videos. It has been known that
the Kinect v2 provides sharper and more detailed depth with
high-quality color streams compared to the Kinect v1 with
structured light method. The resolution of each color and depth
streams were 1920× 1080 and 512× 424 pixels, respectively.
We set a threshold of 0.5-7 meters due to inaccuracies in depth
measurements at near and far ranges. The field of view (FoV)
is 70◦ × 60◦. Thus, we set the Kinect v2 camera far from 1
meters to subjects on a straight line as shown in Fig. 4. The
thermal camera that we used is FLIR A65 thermal imaging
temperature sensor. This camera captures thermal videos in
resolution of 640× 512 per frame with temperature range of
−25 and 135◦C. The spectral range is 7.5 − 13µm and FoV
is 45◦ × 37◦. In order to better synchronize all sensors in our
system, we set the capture rate of the thermal sensor to 10 fps.
The thermal sensor stands next to the interviewer in a fixed
position as shown in Fig. 4.

Note that the system synchronization is critical for data
collection from various modality sensors. Since each sensor
has its own machine to control, we developed a program to
trigger the recording from the start to the end across all three

1https://developer.microsoft.com/en-us/windows/kinect.

Interviewer

Participant

FLIR
Camera

Kinect V2

Fig. 4. Recording system setting used in TAVER to collect tri-modal data.
We set up the Kinect v2 camera to record color and depth sequence data and
FLIR camera to record thermal sequence data for TAVER benchmark.

sensors simultaneously. It is realized through the control of a
master machine by sending a trigger signal to three sensors
concurrently.

2) Participants: 100 subjects have been recruited to partic-
ipate in data collection from which 46 subjects were recorded
with a fully multi-spectral setting, and 17 subjects agreed to
share their data. There are 7 males and 10 females, with ages
ranging from 21 to 38 years old. All subjects have same mother
languages as Korean. Following the IRB approved protocol,
the informed consent form was signed by each subject before
starting of data collection.

3) Emotion Elicitation: During data construction, we first
showed relaxed videos in 10 minutes to subjects that make
feel comfortable. We then composed an unannounced short
interview in 5 minutes with subjects to interviewees and
interviewers who use another language (English). When in-
terviewers ask questions, people are embarrassed and stressed
to answer the questions due to the inconvenience and burden
of other languages. In their self-reports, subjects also said feel
uncomfortable for the interviews with another language.

B. Data Pre-processing

1) Calibration: To calibrate color and depth streams, we
used iai Kinect v2 libary [68]. We acquired several pieces of
color, IR, and raw depth images containing a checkerboard
pattern of 5 × 7. The distance between corners was set to
0.03m. Using the calibration toolbox provided in the iai kinect
v2 libary [68], we estimated the shift parameter between IR
and depth images and the projection matrix between IR and
color images. The warping process consists of two parts. The
depth map was warped into IR image coordinate using a
shift parameter. The depth map on IR camera coordinate was
finally projected into the RGB image coordinate. The library
performed warping into the cropped RGB image coordinates.
After projecting depth values to the RGB camera coordinate,
we discarded the region exceeding the field of view of depth
camera. Thus, the cropped color and depth images have
1408× 792 resolutions.

2) Face Detection: To recognize the emotion from color
recording videos, we first detected the human face in each
color video frame using face and landmark detector in Dlib-
ml [69], and then cropped the detected face region. We
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(a) Color sequence

(b) Depth sequence

(c) Thermal sequencee

Fig. 5. Example of sample data sequence from a participant including color,
depth, and thermal frames.
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Fig. 6. Amount of frames in each video in TAVER benchmark.

then map the detected landmark points to pre-defined pixel
locations in order to normalize the eye and nose coordinates
between adjacent frames. For the depth stream, we warp the
detected landmark points from color image to depth with
calibration parameters. On the other hand, we use FLIR’s
ResearchIR software 2 to detect FLIR face region. Fig. 5
illustrates sample data sequences of tri-modal from a subject.

C. Annotation

We modified a web-based annotation interface [41] to
annotate affective dimensions 3. The definition of valence
and arousal dimensions was adapted from [16]. We hired
6 annotators aged between 20 and 25. 3 annotators were
assigned to each video sequence for more accurate annotations.
The annotators were instructed to simultaneously and time-
continuously consider the intensity of valence and arousal
during the annotation. The two affective dimensions (arousal
and valence) were annotated using a slider with values ranging
from -10 to 10 and a step of 1. Each annotator was instructed
orally and received instructions with a 3 pages document ex-
plaining in details the procedure and including some examples
of annotations to follow for the annotation task. In order to

2https://www.flir.com/discover/rd-science/matlab/
3https://github.com/JeanKossaifi/valence arousal annotator/
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Fig. 7. Distribution of arousal and valence scores in TAVER benchmark.
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Fig. 8. Histogram of arousal and valence scores in TAVER benchmark.

deal with issue of missing values in the annotations, data
were interpolated using 1D bilinear interpolation. Finally, the
ground truth of a sequence was estimated by mean filtering
the annotations provided by all the 3 annotators.

D. Analysis

In total, we annotated more than 27K frames with frame
levels valence and arousal intensities in the range of -10 to 10.
The number of frames at each video is shown in Fig. 6. In Fig.
7, we show the distribution of the values of arousal and valence
in the TAVER benchmark as well as histogram of arousal
and valence in Fig. 8. We compared TAVER benchmark with
other public datasets for dimensional emotion recognition such
as RECOLA [24], SEWA [25], AFEW-VA [41], BP4D [19],
and BP4D+ [21]. Even if the datasets for multi-spectral facial
expression analysis including BP4D and BP4D+ collected
large-scale 3D facial models with Di3D dynamic imaging
system in Table II, they annotated AUs and discrete emotion
categories not including arousal and valence scores. Compared
with those datasets, we collect the videos from participants
without artificial acting for more natural emotion elicitation.

For the analysis of the annotation of the affective behaviors,
we computed the MSE, the mean correlation coefficient and
the Cronbach’s α [24] in Table III. The Cronbach’s α is an
estimate of the internal consistency between annotations; α >
0.7 is considered as an acceptable internal consistency and
α > 0.8 is considered as a good consistency. Results from the
raw data show that their internal consistency is acceptable for
valence and arousal after zero-mean normalization.
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TABLE II
COMPARISON OF TAVER WITH EXISTING EMOTION RECOGNITION DATASETS. ALTHOUGH TAVER HAS LITTLE SUBJECTS, IT CONTAINS COLOR, DEPTH,

AND THERMAL VIDEOS FOR TRI-MODAL EMOTION RECOGNITION.

Database Subjects Annotation
type Amount of data Ellicitation

method Environment Illumination Data type

RECOLA [24] 27 participants Dimensional 27 videos of 5
mn.

Online
interactions Controlled Controlled Color

SEWA [25] 84 participants Dimensional 300 videos of
6s to 4mn.

Human-
computer
interaction

webcam Indoor-In-the-
Wild Color

AFEW-VA [41] 240 subjects Dimensional 600 video
clips. Movie actors Indoor-In-the-

Wild
Indoor-In-the-

Wild Color

BP4D [19] 41 subjects Categorical 328 videos of
1-4 mn. Actors Controlled Controlled Color + Depth

BP4D+ [21] 140 subjects Categorical 1400 videos of
1-2 mn. Actors Controlled Controlled Color + Depth

+ Thermal

TAVER 17 participants Dimensional 17 videos of
1-4 mn.

Human-human
interaction Controlled Controlled Color + Depth

+ Thermal

TABLE III
STATISTICS OF THE CONTINUOUS EMOTION AFTER APPLYING ZERO MEAN

NORMALIZATION. % POS. MEANS PERCENTAGE OF POSITIVE FRAMES.

Dimension % pos. Corr. α

Arousal 45.4 0.424 0.72
Valence 46.9 0.479 0.79

V. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we present a detailed analysis and evalu-
ation of our approach on dimensional emotion recognition.
Specifically, we firstly evaluated the influence of our proposed
method with the TAVER benchmark with ablation evaluations,
with respect to 1) various combination of different modalities
such as color, depth, and thermal, 2) the proposed sub-
networks, and 3) length of the clips. Note that we reformulate
tri-modal recurrent attention network (TRAN) to the uni-
modal recurrent attention network (URAN) to compare our
method with the state-of-the-art methods on two publicly avail-
able benchmark datasets performing in the color information
only.

A. Implementation Details

We implemented our network using the PyTorch li-
brary [70]. To reduce the effect of overfitting, we employed the
dropout scheme with the ratio of 0.5 between fully-connected
layers, and data augmentation schemes such as flips, contrast,
and color changes. The videos in the training set were split into
non-overlapped 16-frame clips, and thus the input of model has
a frame rate of 4 fps. For optimization, we choose Adam [71]
due to its faster convergence than standard stochastic gradient
descent with momentum. For tri-modal emotion recognition,
we trained TRAN from scratch using mini-batches of 4 clips,
with initial learning rate as λ = 1e − 4. Meanwhile, we
also trained URAN from scratch with mini-batches of 8 clips
and initial learning rate as λ = 1e − 4 for the comparison
with subsets of RECOLA [16] and SEWA [25] benchmarks.
The filter weights of each layer were initialized by Xavier
distribution, which was proposed by Glorot and Bengio [72],
due to its properly scaled uniform distribution for initialization.
In the SEWA and RECOLA datasets, we detected the face in
each video frame using face and landmark detector in Dlib-
ml [69], and then cropped the detected face region for all

database. We then mapped the detected landmark points to
pre-defined pixel locations in order to normalize the eye and
nose coordinates between adjacent frames to recognize the
emotion from a facial video.

B. Experimental Settings

For baseline models, we reported the results of the VGG-
16 [73] and ResNet-50 [74] networks pre-trained on the
ImageNet dataset [75]. We also considered the VGG-Face
network pre-trained on VGG-Face dataset [76]. In order to
consider the temporal information between the frames, we
extended the VGG-Face network to the CNN-LSTM model,
which consists of one fully-connected layer and two hidden
layers with 128 units similar to [42]. In the following, we
evaluated the proposed method in comparison to the baseline
approach such as AV+EC challenge baseline methods [16],
[18]. Several deep CNNs-based approaches were also com-
pared, such as Chen et al. (LGBP-TOP + LSTM) [33], He et
al. (LGBP-TOP + Bi-Dir. LSTM) [37], Chao et al. (LGBP-
TOP + LSTM + ε-loss and CNN + LSTM + ε-loss) [34], and
Khorrami et al. (CNN+RNN) [36] with RECOLA dataset. We
reimplemented methods of [36] and evaluated on the SEWA
and TAVER datasets. Moreover, we reimplemented AffWild-
Net [42] to compare in TAVER dataset. For all the investigated
methods, we interpolated the valence scores from adjacent
frames related to dropped frames that the face detector missed.
In addition, following the AV+EC’s post-processing procedure
of predictions [16], [48], we applied the same chain of post-
processing on the obtained predictions; smoothing, centering
and scaling except time-shifting.

1) Datasets: In experiments, we used the proposed TAVER
dataset splitted into 12 training and 5 test videos. Furthermore,
we also used RECOLA dataset [24] and SEWA dataset [25]
used in AV+EC 2015 [16] and AV+EC 2017 [18] challenges,
respectively.

The AV+EC 2015 challenge used the subset of RECOLA
dataset [24], which was recorded for 27 French-speaking
subjects. The dataset contains two types of continuous labels,
arousal and valence, which were manually annotated by six an-
notators. Each continuous emotion label ranges from [−1, 1].
Raw interview video frame has 1080 × 1920 resolution and
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(a) Color sequence

(b) Depth sequence

(c) Thermal sequence

(d) Attention score

Fig. 9. Visualization of spatiotemporal attention maps learned by TRAN for two subjects in TAVER benchmark: Attention score is normalized by the
spatial softmax. Red indicates higher weight of the frame and blue indicates lower weight. Specifically, the areas around eyes and mouth are considered to
be important to estimate emotion.

16 fps. Since the test set labels were not readily available, we
evaluate all of our experiments on the development set.

Compared to RECOLA dataset, the subset of SEWA
dataset [25] 4 used in the AV+EC 2017 challenge was acquired
in various places such as home and work place with diverse
personal equipments such as webcams and microphones. The
dataset contains three types of continuous labels such as
arousal, valence and liking, which were manually annotated
by six annotators. Thus, it is more challenging and tailors to
real-life applications of affective computing technologies than
RECOLA dataset.

2) Metrics: For quantitative evaluation, we computed three
metrics: (i) Root Mean Square Error (RMSE), (ii) Pearson
Correlation Coefficient (CC), and (iii) Concordance Correla-
tion Coefficient (CCC) as used in [36]. First of all, RMSE is
the most common evaluation metric in a continuous domain
which is defined as:

RMSE =

√√√√ 1

n

n∑
i=1

(ŷi − yi)2 (6)

where ŷi and yi are the ground truth and prediction of the i
th sample, and n is the number of samples in the evaluation
set. Note that RMSE-based evaluation can heavily weigh the
outliers [18], and thus it is not able to provide the covariance
of prediction and ground-truth to show how they change with
respect to each other. Pearson correlation coefficient (CC) is
therefore proposed in [18] to overcome this limitation:

ρ =
COV (ŷ, y)

σŷσy
=
E[(ŷ − µŷ)(y − µy)]

σŷσy
, (7)

4http://sewaproject.eu

TABLE IV
EFFECTIVENESS OF TRI-MODAL INPUT FOR DIMENSIONAL EMOTION

RECOGNITION. TRAN IS TRAINED ON THE TRAINING AND VALIDATION
SETS AND EVALUATED WITH THE TEST SET ON THE TAVER BENCHMARK.

Color Depth FIR RMSE CC CCC
X 0.120 0.481 0.446
X X 0.117 0.501 0.482
X X 0.114 0.546 0.499
X X X 0.112 0.563 0.521

where ρ indicates the Pearson correlation coefficient, σ2
x and

σ2
y are the variances of the predicted and ground truth values,

and µx and µy are their means, respectively. Especially, the
CCC tries to measure the agreement between two variables
using the following expression:

ρc =
2ρσŷσy

σ2
ŷ + σ2

y + (µŷ − µy)2
(8)

where ρc indicates the concordance correlation coefficient.
Unlike CC, the predictions that are well correlated with the
ground-truth but shifted in value are penalized in proportion
to the deviation in CCC. The highest CC and CCC values thus
represent the best recognition performance.

C. Results on TAVER Benchmark

1) Analysis on Tri-modal Input: To verify the effects of the
tri-modal input to estimate dimensional emotion, we analyzed
the performance of each modality in Table IV. We set up the
performance using only color videos as baseline performance.
By leveraging depth videos, the estimation performances im-
prove 0.02 and 0.036 for CC and CCC scores compared
to the baseline. In respect to thermal videos, the estimation
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Fig. 10. Ablation study of TRAN for various length of clips on TAVER benchmark. When we set T as 16, it shows best performance. In the remaining
experiments, we use T = 16 frames as length of input sequence.
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(a) 1st subject from [36]
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(b) 6th subject from [36]
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(c) 1st subject from URAN
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(d) 6th subject from URAN

Fig. 11. Estimated valence graph of two subjects in the development set on TAVER benchmark with [36] and URAN. The x-axis is the number of frames
detected in face detector, and the y-axis is the valence score. Red line is ground truth labels and blue line is estimated scores. Note that these graphs are not
interpolated at the dropped frames.

TABLE V
ABLATION STUDY OF TRAN ON TAVER BENCHMARK. WITH ATTENTION

NETWORKS, WE ACHIEVED THE BEST RESULT IN ALL MEASUREMENTS.

Method RMSE CC CCC
TRAN (w.o./Attention) 0.116 0.504 0.473

TRAN 0.112 0.563 0.521

performances were 0.065 and 0.053 higher for CC and CCC
scores than the baseline. When we used all the color, depth,
and thermal videos for learning the networks, the estimation
performances were 0.082 and 0.075 higher for CC and CCC
scores than the baseline which shows the robustness of using
tri-modal input to estimate the dimensional emotion. The
usage of tri-modal input also showed the lowest value 0.112
for RMSE score. Although the bi-modal input improves the
recognition ability, the full usage of tri-modal input including
color, depth, and thermal shows the best performance. Note
that the A-LSTM module was used for input of single modality
instead of the GA-LSTM module.

2) The Effects of Attention Inference: In Table V, we
evaluated the effects of attention inference modules. For this
experiment, we removed the attention networks in the pro-

posed TRAN, and fed the 3D convolutional feature activations
into emotion recognition networks. To verify the effectiveness
of the attention to estimate dimensional emotions, we visu-
alized the normalized attention maps where model focused
on parts of the face, while improving the emotion recogni-
tion performance. As shown in Fig. 9, the proposed model
effectively learns the important parts in consecutive frames in
same subjects, especially eyes and mouth. At different frames,
the proposed model captures different parts, since GA-LSTM
deals with spatiotemporal correspondence. As a result, the
proposed attention cube highlights salient parts of emotion
recognition and implicitly learn to detect specific AUs in facial
images.

3) The Effects of the Number of Frames: In Fig. 10, we
estimated RMSE, CC and CCC scores for TRAN on the
TAVER with respect to various length of clip. Overall, CC
and CCC scores increase with the number of frames until
16 frames. However, CC and CCC scores decrease after
16 frames. In addition, RMSE was also decreased after 16
frames, which means that the overlength of clip decreases the
performance. Thus, we used the 16 frames as length of clip
for other experiments.
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(a) Color sequence

(b) Attention score

Fig. 12. Visualization of spatiotemporal attention maps learned by the proposed network for two subjects in RECOLA benchmark [24]: Attention score is
normalized by the spatial softmax. Red indicates higher weight of the frame and blue indicates lower weight. Specifically, the areas around eyes and mouth
are considered to be important to estimate emotion.

TABLE VI
QUANTITATIVE EVALUATION OF URAN AND TRAN FOR THE PREDICTED
VALENCE ON TAVER BENCHMARK. NOTE THAT WE USED COLOR VIDEOS

IN TAVER BENCHMARK FOR COMPARISON TO BASELINE METHODS.

Architectures Method RMSE CC CCC

CNN

CNN [36] 0.132 0.421 0.387
VGG-16 [73] 0.131 0.426 0.395

ResNet-50 [74] 0.128 0.443 0.409
VGG-Face [76] 0.125 0.478 0.451

CNN+RNN

CNN + RNN (≈ 4 sec.) [36] 0.127 0.458 0.413
VGG-Face-LSTM [76] 0.124 0.482 0.457

AffWildNet [42] 0.123 0.499 0.468
URAN 0.120 0.481 0.446

4) Comparison to Other Methods: Table VI summarizes
the RMSE, CC and CCC values obtained when applying
all the developed CNN-based architectures including VGG-
16, ResNet-50 and VGG-Face, and CNN-RNN architectures
including VGG-Face-LSTM, Khorrami et al. [36] and Af-
fWildNet [42]. Our proposed method provides state-of-the-
art performance with the same length of clip, which means
that attention mechanism in URAN improves the performance.
We trained all the methods with color videos in TAVER
dataset, then compared to color stream with TRAN. Note
that we reimplemented the methods of AffWildNet [42] and
Khorrami et al. [36] with PyTorch library to compare with
our method. In Fig. 11, we compared the estimated valence
graph from [36] and TRAN with color, which show that TRAN
outperforms [36].

D. Results on Other Benchmarks

In the following, we evaluated the proposed network
through comparisons to state-of-the-art CNNs-based ap-
proaches [33], [34], [36], [37] on the RECOLA dataset [24],
which has been adopted for the AudioVisual Emotion recog-
nition Challenges (AV+EC) in 2015 [16] and 2016 [48]. We
also compared the proposed method to the state-of-the-art on
the subset of SEWA dataset [25] used in AV+EC in 2017 [18].
Because all the RECOLA and SEWA benchmarks are com-
posed of only color recording facial videos, we reformulated
tri-modal recurrent attention network (TRAN) to the uni-
modal recurrent attention network (URAN), which replaced
the proposed GA-LSTM modules to simple A-LSTM modules
for this comparison.

TABLE VII
QUANTITATIVE EVALUATION OF URAN FOR THE PREDICTED VALENCE ON

THE RECOLA DATASET [24]. WE DENOTE A RESULT OF BASELINE
METHOD FROM AVEC‘15 CHALLENGE [16].

Method RMSE CC CCC
Baseline [16] 0.117 0.358 0.273

CNN [36] 0.113 0.426 0.326
CNN + RNN (≈ 1 sec.) [36] 0.111 0.501 0.474
CNN + RNN (≈ 4 sec.) [36] 0.108 0.544 0.506

LGBP-TOP + LSTM [33] 0.114 0.430 0.354
LGBP-TOP + Bi-Dir. LSTM [37] 0.105 0.501 0.346
LGBP-TOP + LSTM + ε-loss [34] 0.121 0.488 0.463

CNN + LSTM + ε-loss [34] 0.116 0.561 0.538
URAN 0.102 0.572 0.546

TABLE VIII
QUANTITATIVE EVALUATION OF URAN FOR THE PREDICTED VALENCE ON

THE SEWA BENCHMARK [18]. WE DENOTE A RESULT OF BASELINE
METHOD FROM AVEC‘17 CHALLENGE [18].

Method RMSE CC CCC
Baseline [18] - - 0.400

CNN [36] 0.114 0.564 0.528
CNN + RNN (≈ 4 sec.) [36] 0.104 0.616 0.588

URAN 0.099 0.638 0.612

We compared URAN with the state-of-the-art methods such
as CNN-based approaches [36] and LSTM-based approaches
[34] on the subset of RECOLA dataset [24] in Table VII.
The results showed that the proposed method exhibits a better
recognition performance than conventional methods [33], [34],
[36], [37]. We also visualize the spatiotemporal attention
maps obtained by URAN in the RECOLA dataset in Fig.
12. Although we trained URAN without guidance of depth
and thermal recording videos, our attention network found
discriminative parts well in face owing to spatial and temporal
encoder-decoder architecture.

In Table VIII, we also compared our method with the RNN-
based approach [36] on the subset of SEWA dataset [25],
which includes 34 training and 14 development videos. The
results have also shown that the proposed method exhibits a
better recognition performance compared to the conventional
methods. We also visualize the valence scores predicted by the
proposed method for two subjects of RECOLA and SEWA
datasets in Fig. 13 and Fig. 14, respectively. The proposed
models can detect the valence score especially on the peak
points by demonstrating the effects of URAN.
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(b) 8th subject

Fig. 13. Estimated valence graph of subjects in the development set on RECOLA benchmark [16] The x-axis is the number of frames detected in face
detector, and the y-axis is the valence score. Red line is ground truth labels and blue line is estimated scores. Note that these graphs are not interpolated at
the dropped frames.
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Fig. 14. Estimated valence graph of subjects in the development set on SEWA benchmark [25]. The x-axis is the number of frames detected in face detector,
and the y-axis is the valence score. Red line is ground truth labels and blue line is estimated scores. Note that these graphs are not interpolated at the dropped
frames.

VI. CONCLUSION

In this paper, we presented TRAN for dimensional emotion
recognition by jointly utilizing tri-modal color, depth, and
thermal recording videos. The key idea of this approach
is to combine heterogeneous modality within unified deep
networks, where discriminative and salient parts of faces
were implicitly detected to boost the recognition accuracy.
TRAN estimated the attentive region of temporally varying
human face and the continuous emotion score effectively by
leveraging 3D-CNNs. Moreover, our unified framework was
implicitly learned to estimate the attention in face videos with-
out any pixel-level annotations. We also introduced TAVER
benchmark that is more robust in a variety of environments
such as illumination or skin color. An extensive experimental
analysis showed the benefits of TRAN for tri-modal dimen-
sional emotion recognition on TAVER benchmark and URAN
achieves state-of-the-art emotion recognition performances on
both RECOLA and SEWA benchmarks. We believe that the
results of this study will facilitate further advances in tri-modal
emotion recognition and its related tasks.
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