
Robust Stereo Matching Using
Probabilistic Laplacian Surface Propagation

Seungryong Kim1, Bumsub Ham2?, Seungchul Ryu1, Seon Joo Kim1, and
Kwanghoon Sohn1

1Yonsei University, Republic of Korea, 2Inria, France
{srkim89,ryus1,seonjookim,khsohn}@yonsei.ac.kr, {bumsub.ham}@inria.fr

Abstract. This paper describes a probabilistic Laplacian surface prop-
agation (PLSP) framework for a robust stereo matching under severe
radiometric variations. We discover that a progressive scheme overcomes
an inherent limitation for this task, while most conventional efforts have
been focusing on designing a robust cost function. We propose the ground
control surfaces (GCSs) designed as progressive unit, which alleviates
the problems of conventional progressive methods and superpixel based
methods, simultaneously. Moreover, we introduce a novel confidence mea-
sure for stereo pairs taken under radiometric variations based on the
probability of correspondences. Specifically, the PLSP estimates the GCSs
from initial sparse disparity maps using a weighted least-square. The
GCSs are then propagated on a superpixel graph with a surface confi-
dence weighting. Experimental results show that the PLSP outperforms
state-of-the-art robust cost function based methods and other propaga-
tion methods for the stereo matching under radiometric variations.

1 Introduction

Stereo matching aims to extract 3D scene information by finding the correspon-
dence between stereo pairs taken at different viewpoints of the same scene [1].
Nowadays, state-of-the-art methods provide satisfactory results under the color
consistency condition, i.e., corresponding pixels have a similar color distribu-
tion. However, the color consistency assumption is often violated since the color
of an image is the result of complex combinations of imaging pipelines. Specif-
ically, various factors including illumination source variations, non-Lambertian
surfaces, vignetting, device characteristics, and an image noise have an influence
on the performance of the stereo matching [2]. Conventionally, to alleviate these
problems, a number of methods have been proposed to develop a robust cost
function that is insensitive to radiometric distortions [2–7]. However, for stereo
images taken under challenging environments, e.g., severe radiometric variations,
some pixels or regions cause erroneous local minima. In this case, a robust cost
function approach cannot guarantee to estimate reliable correspondences. In ad-
dition, costly global optimizations on the Markov random field (MRF), including

? WILLOW project-team, Département d’Informatique de l’Ecole Normale
Supérieure, ENS/Inria/CNRS UMR 8548.



2 S. Kim et al.

a graph-cut (GC) and a belief propagation (BP) [8], cannot also infer a fully re-
liable solution and even propagate errors under these circumstances.

We discover that a progressive framework can overcome such an inherent lim-
itation for the stereo matching under severe radiometric variations. It is inspired
by interactive image editing methods in computer graphics such as colorization
[9] and segmentation [10], which propagate an initial seed to infer fully dense
results. A number of methods employed the progressive scheme to formulate the
stereo matching as a constrained optimization problem [11–13]. These methods
find ground control points (GCPs) on reliable regions and propagate them to
infer dense disparity maps, which shows satisfactory performance with low com-
plexity. However, an inherent problem of progressive methods is the sensitivity to
outliers in initial GCPs since they assume that the initial GCPs are fully reliable
[11]. In addition, they induce an edge-blurring on discontinuity regions since a
disparity itself is propagated into first-order neighboring pixels. Since the GCPs
estimated from stereo images taken under severe radiometric variations cannot
be liberated from a false correspondence, conventional progressive methods are
not suitable for these tasks.

To alleviate these problems, this paper proposes a probabilistic Laplacian
surface propagation (PLSP) framework, which infers an edge-preserved and ac-
curate disparity map even for unreliable GCPs. The PLSP overcomes the lim-
itations of conventional progressive methods by leveraging a superpixel scheme
and a confidence weighting. In stereo matching, a superpixel scheme has been
popularly incorporated based on the fact that the disparity map is often spa-
tially smooth while its discontinuities are aligned with image edges [14–20]. It
reduces an influence of outliers or disparity fluctuations within the superpixel
and consolidates boundaries, which enables sharp and accurate disparity maps.
However, since slanted-surfaces are defined as three continuous parameters, con-
ventional superpixel based approaches require an inference in continuous MRFs
or assign a predefined disparity plane only, which is not robust while demanding
a high complexity. The PLSP, combining a progressive scheme and a superpixel
scheme, can infer fully continuous slanted-surfaces efficiently. In other words,
the PLSP overcomes the limitations of conventional progressive methods and
conventional superpixel based methods, simultaneously. Moreover, a novel con-
fidence measure is employed for stereo pairs under radiometric variations, based
on the probability of correspondences from initial GCPs. Specifically, the PLSP
estimates reliable slanted-surfaces, called the ground control surfaces (GCSs),
on superpixels from initial GCPs using a weighted least-square, and propagates
these surfaces on a superpixel graph. For the stereo matching under severely
different radiometric distortions, the PLSP outperforms other state-of-the-art
robust stereo matching methods and propagation methods.

The remainder of this paper is organized as follows. Sec. 2 introduces related
works for the proposed method. Sec. 3 describes the PLSP framework for a robust
stereo matching. Experimental results are given in Sec. 4. Finally, conclusion and
suggestions for future works are given in Sec. 5.
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2 Related Work

Our approach aims to estimate an accurate disparity map for stereo pairs taken
under radiometric variations, and it incorporates a progressive scheme on a su-
perpixel graph. This section describes related works for a robust stereo matching,
a progressive stereo matching, and a superpixel based stereo matching.

Robust Stereo Matching For a stereo matching under radiometric variations,
a number of methods have been proposed to develop a robust cost function [2–7].
A Census transform [3] based on a local order of intensities is tolerant to local
illumination variations. It, however, produces unsatisfactory performance on ho-
mogeneous or noisy regions where the local order of intensities is indistinct. Al-
though normalized correlation based cost functions such as an adaptive normal-
ized cross-correlation (ANCC) [4] and a Mahalanobis distance cross-correlation
(MDCC) [5] show satisfactory results for linear variations, they provide limited
performances under severe radiometric distortions. A mutual information (MI)
based on the joint probability has been widely used due to its robustness [6, 7].
Hirschmüller and Scharstein evaluated in detail the robustness of cost functions
in a stereo matching with respect to various radiometric variations. [2]. Note
that any cost function cannot estimate a fully reliable disparity map for stereo
pairs taken under severe radiometric variations since there exist the pixels or
regions that cause erroneous local minima.

Progressive Stereo Matching To address the inherent ambiguities of the
stereo matching in homogeneous and occluded areas, progressive approaches
have been proposed [11–13]. These methods find reliable disparities on salient
pixels, referred as GCPs, and propagate them to neighboring pixels. Sun et al.
employed a scanline construction with local color and connectivity constraints
to propagate reliable disparities [13]. Hawe et al. proposed the compressive sens-
ing based propagation scheme [12]. A Laplacian propagation inspired by [9] has
been a seminal work due to its robustness [11]. It tried to minimize the difference
between a disparity of a center pixel and weighted average of disparities within
neighboring pixels [11]. However, conventional progressive approaches have in-
herent limitations, e.g., they are sensitive to outliers in initial GCPs and induce
an edge-blurring especially on discontinuity regions. It is worth noting that un-
like these methods, our approach employs a superpixel scheme and a confidence
weighting, which provides the edge-preserved disparity maps with the robustness
to erroneous GCPs.

Superpixel Based Stereo Matching In stereo matching, a superpixel has
been popularly incorporated to provide explicit smoothness priors, enforcing all
pixels within the superpixel to lie on the same 3D surface [14–20]. These methods
first assign an unique slanted-surface for each superpixel by applying the surface
fitting to an initial disparity map, such as RANSAC based methods [19], least-
square based methods [17], and voting based methods [18, 20]. Then, extracted
surfaces are optimized using the BP [18] or the GC [17]. However, the surface
fitting is not an easy task when there exist errors on initial correspondences.
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Fig. 1. Framework of the PLSP. The PLSP employs a confidence measure based on
the probability of correspondences from initial sparse disparity map, and it is used
to estimate a slanted-surface as GCSs and a confidence of GCSs itself. The PLSP
estimates the GCSs on superpixels from sparse disparity map using a weighted least-
square. These slanted-surface parameters are then propagated on a superpixel graph
with a surface confidence weighting.

In addition, since slanted-surfaces are defined as three continuous parameters,
conventional superpixel based methods require an inference in continuous MRFs
to estimate dense slanted-surface maps, which induces a dramatically high com-
plexity [16]. Thus, most methods only assign the label from a predefined disparity
plane set on each superpixel, which provides an inherent limitation. Compared to
these methods, our approach estimates reliable slanted-surfaces and propagates
them on a superpixel graph, which overcomes the limitations of conventional
superpixel based methods.

Contributions of Our Approach The contributions of this paper are sum-
marized as follows. First, to the best of our knowledge, it is the first attempt
to employ a progressive framework for the stereo matching under radiometric
variations. Second, instead of propagating the GCPs itself on a pixel graph, our
approach propagates the GCSs on a superpixel graph, which overcomes the lim-
itations of conventional progressive methods and conventional superpixel based
methods, simultaneously. Finally, a novel confidence measure is proposed for
stereo pairs taken under different radiometric conditions based on the prob-
ability of correspondences from GCPs, weighted by SIFT features, and it is
incorporated into a propagation framework.

3 Probabilistic Laplacian Surface Propagation

3.1 Problem Statement and Overview

Given stereo pairs IL : I → R3 and IR : I → R3 taken under different radiomet-
ric conditions, the PLSP aims to estimate a dense disparity map D : I → L that
assigns each pixel m = [xm, ym]T ∈ I to a disparity dm ∈ L, where I ⊂ N2 is a
dense discrete image domain and L is a discrete disparity candidate. To this end,
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the PLSP leverages a propagation of initial GCPs G : I ′ → L, where I ′ ⊂ I
is a sparse discrete image domain. We should note that any given cost function
cannot find perfect GCPs for stereo images under severe radiometric variations,
thus initial GCPs have non-uniform distributions and erroneous outliers. Fig. 1
shows the overall framework of the PLSP. From the initial GCPs, a disparity
confidence is estimated by the probability of correspondences from initial GCPs
in Sec. 3.2. Based on this confidence, the PLSP estimates the GCSs from ini-
tial GCPs in Sec. 3.3 and propagates these GCSs on the superpixel graph with
a surface confidence weighting in Sec. 3.4. Finally, the dense disparity map is
fitted by dense slanted-surface parameters.

3.2 Confidence Modeling via Color Mapping Probability

In this section, a novel confidence measure is introduced for stereo pairs taken
under different radiometric conditions. We argue that the confidence of a dis-
parity at a pixel can be measured by the probability of correspondences between
the pixel itself in the left image and the corresponding pixel in the right image.
It assumes that there exists a one-to-one color mapping between stereo pairs,
i.e., each color in the left image could be mapped into one color in the right im-
age. This assumption explains many instances of color variation such as different
camera and different camera setting. It can also explain illumination variations
such as global lighting changes and even directional illumination changes [21].

To encode the confidence for a disparity, we leverage that initial GCPs, G,
provide the matching relationship between pixel m = [xm, ym]T in the left im-
age and the corresponding pixel m̂ = [xm − dm, ym]T in the right image. For
all disparities in initial GCPs, the probability of correspondences can be built
by computing the joint probability density function (PDF). Since the space of
possible color is much bigger than the color distribution of an image, IL and
IR are quantized by JL ∈ J and JR ∈ J , respectively, where J is a set of
color indexes, in such a way that the color space is divided into fixed size bins.
In addition, to encode a structural similarity between corresponding pixels, the
joint PDF is weighted by the difference of SIFT features [22] similar to [7]. The
SIFT-weighted joint PDF p(jL, jR) is then defined by

p(jL, jR) =
1

|I ′|
∑
m∈I′

ψ(m, m̂)T [(jL, jR) = (JL(m), JR(m̂))], (1)

where jL ∈ JL and jR ∈ JR. T [·] is a logistic operator providing 1 when the
argument is true. |I ′| is the total number of pixels in initial GCPs. ψ(·, ·) is a
SIFT-weighting factor defined by

ψ(m, m̂) = exp(−‖εL(m)− εR(m̂)‖2/λε), (2)

where λε denotes a coefficient for the degree of structural similarity. εL(m) and
εR(m̂) are SIFT features for the pixel m in the left image and pixel m̂ in the
right image, respectively.
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Based on the SIFT-weighted joint PDF, a confidence M(m, dm) for a pixel
m having a disparity dm is defined by the bi-directional conditional probability
of correspondences between JL(m) and JR(m̂) as

M(m, dm)
∆
= p(JL(m)|JR(m̂))p(JR(m̂)|JL(m)), (3)

where p(JL(m)|JR(m̂)) and p(JR(m̂)|JL(m)) are computed using Baye’s theo-
rem and the marginalization as follows:

p(JL(m)|JR(m̂)) =
p(JL(m), JR(m̂))

p(JR(m̂))

=
p(JL(m), JR(m̂))∑
k∈J

p(k, JR(m̂))
.

(4)

After estimating p(JR(m̂)|JL(m)) in a similar way, the confidence of disparity
in Eq. (3) can be derived as follows:

M(m, dm) =
p(JL(m), JR(m̂))

2∑
k∈J

p(k, JR(m̂))
∑
k∈J

p(JL(m),k)
. (5)

This novel confidence measure estimates the reliability of disparity, and it is
used to estimate a slanted-surface as GCSs and provides a confidence of GCSs
itself for a propagation.

3.3 Ground Control Surfaces (GCSs)

In order to estimate a slanted-surface parameter of each superpixel from initial
GCPs, a number of surface fitting methods can be used [17–20]. Among them,
the least-square based approaches provides a slanted-surface fitting with a low
computational load [17]. Since the cost function of this method is convex, a
closed form solution can be easily found. However, this method is sensitive to
outliers. The PLSP employs a weighted least-square for a slanted-surface fitting
from initial GCPs on superpixels.

The PLSP uses a graph construction scheme such that every superpixel serves
as a graph node and edge is placed between two superpixels if their boundaries
have an overlap. Let us denote i-th superpixel as Si and an index set of spatially
adjacent superpixels for Si as Ni. Similar to other superpixel based methods,
the PLSP leverages that a slanted-surface for a superpixel Si represented as fi =
[fαi , f

β
i , f

γ
i ]T ∈ R3 enables an inference of a disparity value of pixel m ∈ Si such

that dm = aT
mfi where am = [xm, ym, 1]T [14]. The slanted-surface parameter

f∗i of GCSs is determined as minimizing errors between sparse disparities in
initial GCPs and disparities estimated by a slanted-surface within superpixels.
The PLSP employs the confidence weighting to reduce an influence of outliers in
initial GCPs. In addition, to reduce outliers, a regularization term is employed.
Thus, our energy function Φi(f) is defined as follows:

Φi(f) =
∑

m∈Si∩I′
M(m, dm)(dm − aT

mf)2 + λf f
Tf , (6)
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(a) (b) (c) (d)

Fig. 2. The GCSs fitting from initial GCPs for Art image pairs. (a) Superpixel de-
compositions for a reference image. (b) Initial GCPs G with the superpixel grid. (c)
Confidence weights M(m, dm) for initial GCPs. The degree of the confidence is indi-
cated as the brightness of green color. (d) The GCSs fitting as f∗i . The GCSs fitting
on superpixels reduces the influence of erroneous GCPs. These GCSs can be a soft
constraint for dense slanted-surface maps.

where λf is a regularization parameter. It can be represented as the matrix-
vector form as

Φi(f) = (D−Af)TM(D−Af) + fTΛf , (7)

where M = diag{M(m, dm)}m∈Si∩I′ , Λ = diag{λf}, D = {dm}m∈Si∩I′ , and
A = {aT

m}m∈Si∩I′ . The slanted-surface parameter, minimizing this energy func-
tion, can be estimated by ∇Φi(f) = 0 as in Eq. (8).

f∗i = (ATMA + Λ)−1ATMD. (8)

In order to eliminate erroneous surface parameters, appearance neighbors are
employed similar to [15]. Given a superpixel Si, we search the neighboring su-
perpixels having similar appearances by estimating a superpixel feature affinity,
which will be described in the following section, within a predefined window. Let
N s
i is an index set of these superpixels. Our approach eliminates a non-reliable

superpixel satisfying that ∥∥∥∥∥∥f∗i − 1

|N s
i |
∑
j∈N s

i

f∗j

∥∥∥∥∥∥ < τs, (9)

where |N s
i | is the number of appearance neighbors, and τs is a threshold. Finally,

the slanted-surface represented by a parameter f∗i is defined as ground control
surfaces (GCSs). We use these GCSs as initial sparse surfaces to provide the soft
constraint for the propagation.

Fig. 2 shows the GCSs fitting from initial GCPs for Art image pairs. As
shown in GCPs, initial disparities are non-uniformly distributed with outliers.
For the GCSs fitting, the reference image is decomposed as non-overlapping
superpixels. Based on superpixels, the PLSP estimates a reliable slanted-surface
on each superpixel with the confidence weighting, which consolidates disparity
boundaries and reduces the influence of outliers in initial GCPs.
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3.4 Optimization Framework

The PLSP formulates an inference of a set of piecewise continuous slanted-
surfaces as a constrained optimization problem where the GCSs are interpreted
as soft constraints. It formulates each energy function for slanted-surface param-
eters fαi , fβi , and fγi and minimizes these functions, independently. Let F = {fi}
be the vector of all slanted-surface parameters for superpixels. The energy func-
tion of the PLSP is defined as follows:

E(F) = Edata(F) + Esmooth(F), (10)

where a data term Edata(F) and a smoothness term Esmooth(F) are defined as

Edata(F) =
∑
i

pi(fi − f∗i )
2
, (11)

Esmooth(F) =
∑
i

∑
j∈Ni

ωij(fi − fj)2. (12)

Edata(F) encodes the penalty for the dissimilarity of slanted-surface param-
eters fi and corresponding parameters f∗i for GCSs. In addition, it encodes a
surface confidence weight pi to reduce the influence of erroneous GCSs according
to the reliability of surface. Esmooth(F) imposes the constraint that two adja-
cent superpixel i and j have similar slanted-surface parameters according to
surperpixel feature affinity ωij , which will be detailed in the following section.

Confidence for Ground Control Surfaces While conventional propagation
methods impose an uniform confidence for initial seeds, the PLSP employs a
confidence weighting for GCSs according to the reliability of GCSs. The GCSs
represented as f∗i enable an inference of the disparity value of pixels m ∈ Si
such that aT

mf∗i . Thus, a confidence for pixels within a superpixel is computed
as M(m,aT

mf∗i ). In order to estimate a surface confidence weight pi of GCSs,
these confidence weights are aggregated within a superpixel Si as

pi =
1

|Si|
∑
m∈Si

M(m,aT
mf∗i ), (13)

where |Si| is the number of pixels within a superpixel Si. This surface confidence
weight enables the propagation of initial GCSs according to their reliability, thus
reducing the influence of erroneous GCSs in a propagation procedure.

Superpixel Feature Affinity A superpixel as a propagation unit can encode
regional features, providing more robust affinity between adjacent superpixels
compared to the intensity feature into first-order neighboring pixels in conven-
tional methods [11]. The PLSP employs a superpixel feature composed of a color
appearance, a SIFT feature, and a spatial feature. First, color appearance feature
υci describes statistical color information as the average and standard deviation
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(a) (b) (c) (d)

Fig. 3. Propagation of the GCSs in Fig. 2 on a superpixel graph. (a) The superpixel
graph (blue dot: node, green line: edge with superpixel affinities ωij .) (b) Surface confi-
dence weights pi for GCSs. The degree of the confidence is indicated as the brightness of
green color. (c) Results of the PLSP. (d) Ground truth. The PLSP propagates reliable
GCSs on the superpixel graph with the surface confidence weighting, which provides
an edge-preserved and accurate disparity map.

for pixels within superpixels in RGB, Lab, and YCbCr color space [23]. Second,
in order to encode structural information, we adopt the SIFT feature υsi [22].
Specifically, dense SIFT features are extracted from pixels, and then, these fea-
tures are aggregated within superpixels. Finally, spatial feature υpi is defined as
a spatial centroid coordinate within superpixels.

Based on these superpixel features, a superpixel feature affinity ωij between
adjacent superpixel i and j is computed as

ωij ∝ exp(−
∥∥υci − υcj∥∥2/λc − ∥∥υsi − υsj∥∥2/λs − ∥∥υpi − υpj ∥∥2/λp), (14)

where λc, λs, and λp denote coefficients for the similarity degree measuring a
coherence of neighboring superpixels. The larger ωij is, the more likely that two
neighboring superpixels have same slanted-surfaces. The affinity ωij is normal-
ized to have a unit sum such that∑

j∈Ni

‖ωij‖2 = 1. (15)

Solver One strength of our approach is the low complexity since no costly global
optimizations are required such as the GC and the BP [8]. The energy function
E(F) in Eq. (10) can be expressed in matrix-vector form as

E(F) = (F− F∗)TP(F− F∗) + FT(L−W)F, (16)

where F∗ is the vector of surface parameters of GCSs. The matrix P is a diagonal
matrix whose diagonal elements with surface confidence weights such that Pii =
pi. The matrix L is an identity matrix. The matrix W is a weight matrix whose
elements are pairwise affinities ωij .

The minimum of this discrete quadratic form can be obtained by setting
∇E(F) = 0, which amounts to solving the following linear system as

(P + L−W)F = PF∗. (17)
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Algorithm 1: Probabilistic Laplacian Surface Propagation

Input : stereo pairs IL, IR, and GCP G.
Output : dense disparity map D.

1: Compute a confidence of disparity M(m, dm) as in Eq. (5) from GCPs G.
2: Decompose the reference image IL into superpixels Si.

3: Estimate the parameter of GCSs f∗i = [fαi , f
β
i , f

γ
i ]T as in Eq. (8).

4: Compute a Laplacian matrix P + L−W with surface confidence weights pi in
Eq. (13) and affinities ωij in Eq. (14) .

5: Estimate the slanted-surface parameters by F = (P + L−W)−1PF∗ in Eq. (17)
where F∗ = [F∗

α,F
∗
β ,F

∗
γ ].

6: Estimate the dense disparity map D such that dm = aT
mfi for all superpixels.

This linear system with a laplacian matrix can be easily solved as conven-
tional linear solvers [24]. Compared to propagation on a pixel graph [11], our
approach can reduce the computational complexity of the linear solver with the
proposition to the number of pixels within superpixels.

Fig. 3 (a) shows the superpixel graph constructed by superpixel feature affini-
ties, and Fig. 3 (b) shows the surface confidence weight. In the PLSP, the GCSs
are propagated on the superpixel graph with the confidence weighting to infer
dense disparity maps as in Fig. 3 (c). The PLSP is summarized in Algorithm 1.

4 Experimental Results

In this section, the stereo matching performance is evaluated for the PLSP and
other methods on the Middlebury datasets [2], where each dataset consists of
stereo image pairs taken under varying illumination conditions indexed from
1 to 3 and exposure conditions indexed from 0 to 2. In order to evaluate the
robustness to radiometric variations, stereo images were selected according to
the index of illumination or exposure, e.g., “illumination combination 1/1” was
defined as an index of illumination varying from 1 to 1 [2]. The PLSP was
compared with the state-of-the-art robust stereo matching methods such as the
MI [6], Census transform [3], the NCC [2], and the ANCC [4]. These methods
were optimized with the graph-cut (GC) as in [4]. In addition, since the PLSP
was designed to propagate initial GCPs to infer dense disparity map, it was also
compared with other propagation methods for fixed GCPs, such as a weighted
median filtering (WMF) with a hole filling [25], a Guided filtering (GF) based
propagation [26, 24], and a Laplacian propagation (LP) [11]. To evaluate the
robustness of proposed confidence measure, the LP combined with a confidence
weighting (PLP) was evaluated. To evaluate the robustness of the GCSs scheme,
the Laplacian surface propagation (LSP)1 was also evaluated. The parameters of
each method were set to the same values from the original works. The evaluation
criterion is the bad pixel error rate in the non-occluded areas of disparity maps
since it has been popularly used in stereo literatures [4].

1 In order to evaluate the robustness of only surface propagation, the LSP only expands
the propagation unit as a superpixel without the confidence weighting for GCSs.
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Fig. 4. Comparison of disparity estimation for Art and Dolls image pairs taken under
illumination combination 1/3. (from left to right, from top to bottom) Left color image,
right color image, and disparity maps for the ground truth, MI+GC [6], Census+GC [3],
NCC+GC [2], ANCC+GC [4], and PLSP. Conventional robust cost functions cannot
estimate a fully reliable correspondence even with a global optimization. In contrast,
the PLSP estimates accurate disparity maps.

In the experiments, similar to other methods detecting the GCPs [11–13],
initial GCPs were estimated by a linear combination of cost functions, the NCC
[2] and the Census [3], with a winner-takes-all (WTA) optimization and refined
by left-right cross-check [13]. For the superpixel graph, the reference image was
decomposed by a SLIC superpixel due to its compactness and regular shape
[27], and the number of superpixels was set to from 1000 to 1500. The structural
similarity coefficient was defined as λε = 1.3. The color space was quantized
as bin size 20 × 20 × 20 in all experiments. For superpixel feature affinity, the
parameters were empirically determined as {λc, λs, λp} = {0.036, 1.6, 12.8}.

4.1 Comparison with Robust Stereo Matching Methods

In order to evaluate the robustness for radiometric variations, disparity maps of
the PLSP and other robust stereo matching methods were estimated for stereo
pairs taken under radiometric variations. Fig. 4 shows disparity maps for Art
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Fig. 5. Comparison of disparity propagation for GCPs from Books and Reindeer image
pairs taken under illumination combination 1/3. (from left to right, from top to bottom)
The initial GCPs and disparity maps for the ground truth, WMF with the hole filling
[25], GF-based propagation [26], LP [11], PLP, LSP, and PLSP. Conventional methods
show the limitation for unreliable GCPs. Disparity maps of PLP, LSP, and PLSP show
that a superpixel scheme with the confidence weighting provides an edge-preserved and
accurate disparity map.

and Dolls stereo images under the illumination combination 1/3, which is the
most severe radiometric variation.

The performance of the MI-based method is degraded under local variations,
since it is assumed that there are global variations. In addition, the Census trans-
form provides poor results on homogeneous regions which have an indistinct or-
der of intensities. The normalized correlation based methods such as the NCC
and the ANCC show high performance compared to the Census transform. How-
ever, disparity maps of the NCC contain large errors in boundary regions since it
does not encode the spatial structure. The ANCC improves the matching perfor-
mance using weight distributions compared to the NCC. However, conventional
approach for these tasks show the limitations. Pixels degraded by severe radio-
metric distortions are not estimated perfectly by robust cost functions even with
a global optimization. In contrast, the PLSP outperforms conventional methods
by addressing these problems. Since the PLSP propagates sparse and reliable
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Fig. 6. Average bad pixel error rates in the un-occluded areas for disparity maps from
Art, Baby1, Books, Bowling2, Cloth3, Cloth4, Dolls, Moebius, Reindeer, and Wood1
with varying the combination of illumination and exposure index. (a) Illumination
variations. (b) Exposure variations. Progressive approaches including WMF [25], GF
[26], LP [11], PLP, LSP, and PLSP relatively outperform conventional robust cost
function based approaches such as Census [3], NCC [2], and ANCC [4]. The PLSP
shows the best performance with the lowest bad pixel error rates.

GCSs without estimating erroneous pixels, it fills these erroneous regions by
propagating reliable regions.

4.2 Comparison with Robust Propagation Methods

In this section, the PLSP was compared with different robust propagation meth-
ods in terms of stereo matching under radiometric variations. For the fair com-
parison, the initial GCPs were fixed in all methods. Fig. 5 shows disparity maps
of different propagation methods for the GCPs estimated from Books and Rein-
deer image pairs under the illumination combination 1/3.

As shown in Fig. 5, initial GCPs have erroneous disparities and non-uniform
distributions, which induces large hole regions on discontinuity regions. Although
the WMF with the hole filling have shown the satisfactory performance in dis-
parity refinements, it cannot estimate accurate dense disparity for erroneous
GCPs, especially on large holes. The GF-based propagation provides more edge-
preserved disparity maps compared to other methods. However, it is also sen-
sitive to outliers of initial GCPs. In addition, since the GF uses a reference
color image, the textures in the color image are also propagated in final dis-
parity maps. As the most related method, the LP induces edge blurring and
propagates erroneous initial GCPs, since it propagates disparity itself on a pixel
graph without the consideration of the disparity confidence. In contrast, the LP
with proposed confidence weighting, PLP, reduces an influence of the erroneous
pixels. However, there still exists edge blurring problems. Compared to the pixel
propagation, the Laplacian surface propagation, LSP, preserves disparity discon-
tinuities. However, it cannot refine erroneous superpixels. The PLSP framework
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consisting of the surface propagation with the confidence weighting shows the
best performance. It dramatically reduces an influence of errors in initial GCPs
and provides edge-preserved disparity maps compared with other methods.

Fig. 6 shows average bad pixel error rates of disparity maps from Art, Baby1,
Books, Bowling2, Cloth3, Cloth4, Dolls, Moebius, Reindeer, and Wood1 with
varying the combination of illumination and exposure index. Most propagation
methods relatively outperform robust cost function based methods since they
propagate the GCPs without estimating erroneous pixels. However, since there
still remain outliers on initial GCPs from stereo pairs under radiometric vari-
ations, conventional propagation methods provide the limited performance. In
contrast, the PLSP shows the best performance with the lowest bad pixel er-
ror rates compared to other methods. In addition, the PLSP shows competitive
performances for stereo pairs under normal conditions without radiometric vari-
ations. More experimental results are available in the supplementary materials.

5 Conclusion

The robust stereo matching framework called the PLSP has been proposed for
the stereo matching under severe radiometric variations. We discover that a pro-
gressive framework overcomes the limitation of conventional approaches for these
tasks. Instead of propagating the GCPs itself on the pixel graph, we introduced
the GCSs as a propagation unit. To measure the confidence of a disparity for
stereo pairs under radiometric variations, a novel confidence measure has been
proposed based on the probability of correspondence from initial GCPs. The
PLSP provides an edge-preserved disparity map while reducing the influence of
outliers in initial GCPs. Experimental results have shown that the PSLP outper-
forms state-of-the-art robust stereo matching methods and propagation methods
for stereo image pairs taken under severely different radiometric conditions.

For future work, the PLSP will be applied to address other correspondence
problems under different radiometric conditions, such as optical flow or dense
image alignment.
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