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ABSTRACT
In this work, we propose an efficient method that generates pedes-
trian proposals suitable for the autonomous vehicle. Our main intu-
ition is that depth information provides an important cue to assign
the scale of pedestrian proposals. Based on the observation that in a
3-D world coordinate the scales of pedestrians are almost similar, we
formulate the scales of pedestrian patches by projecting 3-D models
to an image plane with its corresponding depth. We also introduce
a scale-aware binary description using both color and depth images.
By using this descriptor, the regression models are trained to rank
the pedestrian proposal candidates and adjust the proposal bounding
boxes for an accurate localization. Our algorithm achieves signifi-
cant performance gains compared to conventional proposal genera-
tion methods on the challenging KITTI dataset.

Index Terms— RGB-D object proposal, scale estimation, scale-
invariant feature. binary feature selection, pedestrian detection

1. INTRODUCTION

Pedestrian detection has attracted a special attention as one of funda-
mental tasks for numerous real-world applications such as automatic
driving and intelligent surveillance [1, 2, 3]. To detect a pedestrian
in a scene, the pedestrian proposal generation step is essential to im-
prove a detection performance by limiting pedestrian candidates in
the scene while eliminating unreliable pedestrian candidates.

Although many methods have been proposed for that task [4, 5,
6], they have frequently encountered a scale ambiguity that hinders
an optimal performance, which means that the scales of pedestrians
in an image vary when pedestrians appear in a wide range of dis-
tances. Unlike object proposal estimation [7], this scale ambiguity
is one of the most important issues in pedestrian proposal genera-
tion. To overcome this problem, most object proposal estimation
methods attempt to exploit multi-scale process and scale prediction
process [5, 8]. First of all, multi-scale process based approaches,
adopted in many hand-crafted methods such as BING [5] and edge
box (EB) [9], first resize an image to multiple quantized scales and
then iteratively generate pedestrian proposals on each resized im-
age. However, their computational complexity is proportion to the
number of the scale levels, and false positives also highly increase
during iteration process. Secondly, scale prediction process based
approaches are to estimate a scale of each proposal explicitly and uti-
lize this scale to detect pedestrian proposals. By leveraging the pow-
erful learning capabilities of convolutional neural networks (CNNs),
these methods have been popularly proposed and provided outstand-
ing performances [8, 1]. However, when estimating the scale of a
pedestrian within a low resolution, it cannot produce stable perfor-
mances due to low discrimination power of CNNs on low-resolution
feature maps [10]. The high complexity of CNN based methods is
also a major hurdle to real-world applications when considering a
limited hardware computing power.

Fig. 1. Pedestrian scale estimation with a depth value. Even if two
pedestrians have different scales in an image, we assign the scale of
pedestrians using depth information and detect pedestrian proposal
candidates reliably.

Recently, some researchers have tried to estimate more reliable
proposals by utilizing depth information to supplement the data pro-
vided in color images [11, 6, 10]. While a color image is sensitive
to complex intra-class variations, such as different colors or illumi-
nation variations, in pedestrian candidates, its corresponding depth
image provides simple but intuitive geometric information. Thus,
the performance of pedestrian proposal generation can be boosted
when color and depth images are jointly used in a synergistic man-
ner. Multiscale combinatorial grouping (MCG) [11] generated pro-
posal candidates by combining features from the color and depth
images. 3D object proposal (3DOP) [6] also estimated proposals in
a 3-D point cloud domain created using color and depth informa-
tion. Zhang et. al. [10] computed and fused three types of features
to capture appearance, geometric, and semantic context information
simultaneously. Thanks to the high accurate scale estimation perfor-
mance, the pedestrian proposal detection accuracy combined with
these methods can be more enhanced than when color information
is considered alone in existing methods [12]. Since, however, their
feature descriptions need huge complexity processes such as multi-
scale segmentation [11] or CNN activations [6], they cannot be di-
rectly applied to a real vehicle system.

In this paper, we introduce an efficient pedestrian proposal esti-
mation algorithm that incorporates a scale estimation process using
depth information in a context of the pedestrian detection. Our key-
ingredient is to leverage depth information to determine the optimal
scale of pedestrians. We observe that in a 3-D world coordinate, the
scales of the pedestrians are almost similar although they vary in an
image plane according to the distance from the camera, as shown in
Fig. 1. Based on this observation, we propose a pedestrian proposal
candidate generation that assigns the pedestrian scale in an image
domain from the representative pedestrian scale in a 3-D world coor-
dinate. We also propose a scale-invariant binary description scheme
and a feature selection technique to construct robust descriptor effi-
ciently. With this binary descriptor, the regression models are trained
to rank and re-localize bounding boxes. With the accurate scale es-
timation and scale-invariant binary feature, the proposed algorithm
solves the scale ambiguity and shows state-of-the-art proposal gen-
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Fig. 2. Overall framework of proposed method.Figure
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Fig. 3. Projection of the representative pedestrian scale in a 3-D
world coordinates into an image plane.

eration performance compared to conventional proposal generation
methods on KITTI dataset [13].

2. PROPOSED METHOD

2.1. Notation and Overview
We represent each pedestrian proposal with a rectangular bounding
box which is parametrized by a tuple [x, y,Ox,Oy]T , where (x, y)
is the center point of the 2-D box. s = [Ox,Oy]T denotes the
horizontal and vertical diameters, which will be termed “pedestrian
scale”. Different from traditional approaches that leverage an image
I only, the proposed method explicitly incorporates scale informa-
tion, obtained from a disparity map D, into the proposal generation.
Our key observation is that in a 3-D world coordinate, the scales of
pedestrian are almost similar although they vary in an image plane
according to the distance from the camera, i.e., depth (see Fig. 3).
Thus, when the representative pedestrian scale Sr in a 3-D world co-
ordinate is determined, the corresponding scale s in an image plane
also can be estimated using depth information.

We first estimate the disparity map D between stereo pair I and
I ′ using the method [14], and transform it into the depth Z. With the
pedestrian scale consistency assumption in a 3-D world coordinate,
we define the representative pedestrian scale Sr in a 3-D world coor-
dinate by using the ground-truth pedestrian box and its correspond-
ing depth. After that, we generate the pedestrian proposal candidates
by assigning the pedestrian scale s for each pixel from the represen-
tative pedestrian scale Sr according to its corresponding depth Z.
Finally a random forest (RF) classifier [15] is trained with binary
feature extractor [16], followed by the bounding box regression [17].
The overall framework of proposed method is illustrated in Fig. 2.

2.2. Proposal Candidate Generation Using Depth Information
2.2.1. Preliminaries

Formally the disparity map can be transformed into depth such that
Z(x, y) = fB/D(x, y), where f is the focal length and B is the

baseline of a stereo camera. Using depth information, a point (x, y)
in the image plane can be transformed into the 3-D world coordinate
P(x, y) = [X,Y, Z] or vice versa:

P(x, y) = Z(x, y)K−1[x, y, 1]T , (1)

[x, y, 1]T = 1/Z(x, y)KP(x, y), (2)

where K = diag([f, f, 1]) is the intrinsic camera matrix. Note that
we do not consider skew parameter for the simplicity of notation.

2.2.2. Pedestrian scale estimation

Our approach is primarily based on the scale-invariance property of
pedestrians in the 3-D world coordinate. Moreover, the pedestrian is
located on a front-parallel space, which means that depth of a pedes-
trian is constant. To verify this, we estimate the distributions of the
ground-truth pedestrian scale S∗ = [OX∗,OY ∗]T in the 3-D world
coordinate using 2446 user-annotations in the KITTI dataset [13].
As shown in Fig. 3, the distributions of S∗ are concentrated on a
single point, which implies that most pedestrians can be modeled
with a single representative scale in the 3-D world coordinate. Note
that the standard deviations of each distribution (σOX∗ , σOY ∗) are
0.0029 and 0.0034, respectively. To estimate the representative scale
Sr for the pedestrian in the 3-D world coordinate, we adopt a simple
strategy that averages the ground-truth scale using KITTI training
dataset [13]. Specifically, for all ground truth bounding box, Sr can
be estimated as follows:

Sr =
1

Nr
[
∑Nr

l=1
OX∗l ,

∑Nr

l=1
OY ∗l ]T (3)

where l and Nr denote the index and the total number of training
dataset.

For the testing image and each point (x, y), the pedestrian scale
s̃(x, y) can be now predicted by projecting the representative scale
Sr into the image coordinate:

[̃s(x, y), 0]T =
1

Z(x, y)
K[ST

r , 0]
T . (4)

That is, the estimated pedestrian scale in the image plane is inversely
proportional to the corresponding depth information. Bounding box
candidates of each point (x, y) are then defined as follows:

c = [x, y, s̃(x, y)]T . (5)

2.3. Binary Feature with Scale-aware Pattern Generation
For bounding box candidates, the pedestrian proposals can be deter-
mined through the feature description on the regions and classifier.
To effectively describe the bounding box candidates, we adopt a bi-
nary descriptor due to its computational efficiency and low memory
consumption. Since in the binary descriptor, binary sampling pat-
terns are fixed for all pixels in an image, we transform the sampling
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Fig. 4. Component contribution on our pedestrian proposal generation: (from left to right) Ground truth, pedestrian proposal detections using
our method without a feature selection and bounding box regression, without bounding box regression, and using our final method.

patterns according to its corresponding scale. Since such a process
does not need an additional computational time, the binary descrip-
tor can be still built in the image domain very efficiently. Since, how-
ever, this simple descriptor cannot handle intra-class variations due
to the variety of pedestrian patches in color, lighting, backgrounds,
and occlusion, we generate a robust descriptor by fusing color and
depth features simultaneously.

2.3.1. Binary feature description
The binary descriptor is defined with pairwise intensity comparisons
sampled on binary sampling patterns. It simply creates a bit vector
with a comparison pattern as

R(I(x, y);uk, vk) :=

{
1 if I(x, y;uk) < I(x, y; vk)
0 otherwise

, (6)

where uk and vk are k-th sampling pattern for k ∈ {1, ..., Np} with
the number of sampling patterns Np. As in [16], it shows high dis-
criminative power with low cost.

To describe each bounding box candidate with the scale s̃(x, y),
we resize the sampling pattern (uk, vk) such that (ũk, ṽk) = (uk ·
s̃(x, y), vk · s̃(x, y)). Thus, binary descriptor for each bounding box
candidate can be described such that

BI(x, y) :=
∑Np

k=1
2k−1R (I(x, y); ũk, ṽk) , (7)

BD(x, y) :=
∑Np

k=1
2k−1R (D(x, y); ũk, ṽk) , (8)

B(x, y) = BI(x, y) + 2NpBD(x, y). (9)

where BI(x, y), BD(x, y) are the binary descriptors extracted from
the color and depth image. A final binary descriptor B(x, y) is con-
structed by concatenating BI(x, y) and BD(x, y).

2.3.2. Binary feature selection

The performance of pedestrian proposal detection depends on the
quality of binary features. Moreover, the robustness of binary fea-
tures depends on the sampling patterns. Even though there are sev-
eral binary sampling pattern selection methods [18, 19] that provide
a limited performance, we propose a binary sampling pattern selec-
tion scheme based on the RF [15] regression. Specifically, to con-
struct the regression model with the optimum feature set, the RF [15]
training is performed twice. We first train with the binary descriptor
of Nf dimensions and select nodes of first Nl layers from Nt trees.
Their predictors are used as a new Ns-dimension descriptor because
these predictors are determined to maximize the information func-
tion. A final regression model is then obtained by retraining the RF
[15] with this binary feature set.

2.4. Bounding Box Regression
Since our method is based on the pre-estimated optimal pedestrian
scale, there might be approximation errors. To reduce such effects,
inspired by bounding-box regression of [17], we train a regression

model with the estimated binary descriptor to obtain more accu-
rate proposal. Specifically, the input to our bounding box regression
model is a set of Nr ground truth training pairs {(cl,gl)}l=1,...Nr ,
where cl = [xl, yl,Oxl,Oyl]T specifies the pixel coordinates of
the center, width and height of the initial proposal. We will drop
the subscript l for convenience. The ground-truth box g is denoted
in same way g = [x∗, y∗,Ox∗,Oy∗]T . The transformation t =
[tx, ty, tOx, tOy]

T between c and g is trained as

tx = (x∗ − x)/Ox, ty = (y∗ − y)/Oy,
tOx = log(Ox∗/Ox), tOy = log(Oy∗/Oy).

(10)

We learn four linear regression model weights with the binary
descriptor by optimizing the regularized least squares objective.

3. EXPERIMENTAL RESULT

Our pedestrian proposal detection method was implemented with RF
[15] in C++ on Intel Core i7-4770 CPU at 3.40 GHz, and measured
the runtime on a single CPU core. We set {Nt, Nl, Nf , Ns} =
{16, 5, 10000, 496} for the feature selection.

We evaluated our method compared to state-of-the-art methods,
such as SS [12], EB [9], region proposal networks (RPN) [8], MCG
[11], 3DOP [6], Fusion-DPM [20], region-based convolutional net-
works (R-CNN) [21], and multiveiw random forest (MV-RGBD-RF)
[22], on the KITTI object dataset [13], which has 7,481 training and
7,518 testing images. Since the ground-truth pedestrian proposals
are not available in the testing set, the training set was manually
partitioned into 3,740 training images and 3,741 validation images.
Note that it is guaranteed that training and validation set do not come
from the same video sequence.

3.1. Proposal Detection Evaluation
3.1.1. Component contribution analysis

In this section, we analyzed the performance gain of key-components
in our method, including the feature selection and the bounding box
regression. Fig. 4 shows the top 10 pedestrian proposals detected
by our method using each component. As expected, the feature
selection enhanced an accuracy of ranking because this component
selects optimum feature set among the large number of feature can-
didates. The bounding box regression improved IoU overlaps. Even
if we estimated the accurate pedestrian scales, various factors, such
as body type, posture, and depth error, induce the scale variations,
reducing the pedestrian detection performance. The bounding box
regression corrected the errors from small scale differences.

3.1.2. Comparison with the state-of-the-art algorithms

Following qualitative experiments reported in [23, 6, 10], we mea-
sured the performance of proposal algorithms such as SS [12], EB
[9], MCG [11], and 3DOP [6] including ours as shown in Fig. 5.

Figure 5 (a) shows recall rates as a function of the number of
proposals. While the 3DOP [6], the state-of-the-art RGB-D proposal
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Fig. 5. Quantitative evluation of our pedestrian proposal estimation with the state-of-the-art algorithms: (a) Recall vs. number of proposals,
(b) Recall vs. IoU Threshold (300 proposals), (c) Recall vs. IoU Threshold (100 proposals).

Fig. 6. Quantitative evaluation of our pedestrian proposal estimation with the state-of-the-art algorithms with visualization of top 10 pedestrian
proposals: (from left to right) Ground truth, RPN [8], 3DOP [6], and proposed algorithm.

Table 1. Average precision (%) of object detection on the test subset
with top 1,000 proposals.

Methods Easy Moderate Hard Avg.

Fusion-DPM [20] 59.51 46.67 42.05 49.41
R-CNN [21] 61.61 50.13 44.79 52.17
MV-RGBD-RF [22] 70.21 54.56 51.25 58.67
3DOP [6] 81.78 67.47 64.70 71.32
Ours 84.37 69.18 67.50 73.68

generation algorithm, requires 500 proposals to achieve 70 percent
recall, our algorithm only requires 150 proposals to achieve the same
recall. Moreover, Figure 5 (b), (c) show recall rates for 300 and 100
proposals as a function of IoU threshold. We achieved 5% and 9%
improvements in average recall rates than the 3DOP [6]. The pro-
posed method ensures reliable results even with a small number of
proposals. This property was also presented in Fig. 6 that visual-
ize only top 10 proposals, and the proposed method detects more
reliable pedestrians similar to ground-truth than the comparison al-
gorithms. RPN [8] fails to estimate accurate scale and thus shows
low recall rate even if it achieves the high binary classification ac-
curacy between pedestrians and backgrounds. 3DOP [6] shows the
low regression performance at the ranking process. On the other
hand, our algorithm accurately estimates the scales and the ranks of
bounding boxes based on the scale-invariant binary description. It
proves that the concept of the depth based scale estimation and the
scale-invariant description contributes significantly to improving the
accuracy of the proposal generation. Table 2. shows the computa-
tional complexity of the state-of-the-art algorithms. Our algorithm
is efficient than other algorithm.

Table 2. Computation time of the-state-of-the-art proposal methods
for handling an image size 1242× 375.

Methods SS [12] EB [9] MCG [11] 3DOP [6] Ours

Time (sec.) 15.39 1.52 156.73 1.20 0.63

3.2. Pedestrian Detection Evaluation
To demonstrate the performance gain of our pedestrian proposal al-
gorithm for pedestrian detection framework, we scored pedestrian
proposal detection results using the detector of FAST R-CNN [17].
The results were denoted in Table 1. Our approach outperformed
the state-of-the-art algorithms. We achieved 1.71% improvement in
Average Precision (AP) for pedestrians.

4. CONCLUSION

We proposed the efficient proposal generation algorithm for pedes-
trian detection. With the scale-invariance property of pedestrians in
the 3-D world coordinate, we utilized depth information to assign the
scale of pedestrian bounding box candidates. To describe the pedes-
trian candidates effectively and efficiently, we adopted the binary
feature descriptor to rank the pedestrian candidates and adjust the
pedestrian bounding boxes. Our approach has shown outstanding
performances compared to existing state-of-the-art pedestrian pro-
posal algorithms on the challenging KITTI benchmark [13]. Com-
bined with detection network of FAST R-CNN [17], our method def-
initely outperformed conventional pedestrian detection algorithms.

5. ACKNOWLEDGMENTS

This work was supported by Institute for Information & commu-
nications Technology Promotion(IITP) grant funded by the Korea
government(MSIP)(No.2016-0-00197)

2048



6. REFERENCES

[1] Z. Cai, Q. Fan, R. S. Feris, and N. Vasconcelos, “A unified
multi-scale deep convolutional neural network for fast object
detection,” In Proc. of ECCV, 2016.

[2] X. Wang, M. Wang, and W. Li, “Scene-specific pedestrian
detection for static video surveillance,” IEEE Trans. PAMI,
vol. 36, no. 2, pp. 361–374, 2013.

[3] H. Choi, S. Kim, K. Park, and K. Sohn, “Multi-spectral pedes-
trian detection based on accumulated object proposal with fully
convolution network,” In Proc. of ICPR, 2016.

[4] K. Kim, C. Oh, and K. Sohn, “Non-parametric human seg-
mentation using support vector machine,” In Proc. of BMVC,
2015.

[5] M. Cheng, N. J. Mitra, Z. Zhang, W. Lin, and P. Torr,
“Bing: Binarized normed gradients for objectness estimation
at 300fps,” In Proc. of CVPR, 2014.

[6] X. Chen, K. Kunda, Y. Zhu, and A. Berneshawi, “3d object
proposals for accurate object class detection,” In Proc. of NIPS,
2014.

[7] R. S. Pahwa, J. Lu, N. Jiang, T. T. Ng, and M. N. Do, “Locating
3d object proposals: A depth-based online approach,” IEEE
Trans. CSVT, 2017.

[8] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards
real-time object detection with region proposal networks,” In
Proc. of NIPS, 2015.

[9] C. L. Zitnick and P. Dollar, “Edge boxes: Locating object pro-
posals from edges,” In Proc. of ECCV, 2014.

[10] L. Zhang, L. Lin, X. Liang, and K. He, “Is faster r-cnn doing
well for pedestrian detection?,” In Proc. of ECCV, 2016.

[11] P. Arbelaez, J. Pont-Tuest, J. T. Barron, F. Marques, and J. Ma-
lik, “Multiscale combinatorial grouping,” In Proc. of CVPR,
2014.

[12] J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, and
A. W. M. Smeulders, “Selective search for object recognition,”
IJCV, vol. 104, no. 2, pp. 154–171, 2013.

[13] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for au-
tonomous driving? the kitti vision benchmark suite,” In Proc.
of CVPR, 2012.

[14] K. Yamaguchi and R. McAllester, D. Urtasun, “Efficient joint
segmentation, occlusion labeling, stereo and flow estimation,”
In Proc. of ECCV, 2014.

[15] L. Breiman, “Random forest,” Machine Learning, vol. 45, no.
1, pp. 5–32, 2001.

[16] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, “Brief: Binary
robust independent elementary features,” In Proc. of ECCV,
2010.

[17] R. Girshic, J. Donahue, T. Darrel, and J. Malik, “Region-based
convolutional networks for accurate object detection and seg-
mentation,” Machine Learning, vol. 45, no. 1, pp. 5–32, 2001.

[18] F. Fleuret, “Fast binary feature selection with conditional mu-
tual information,” JMLR, vol. 5, no. 1, pp. 1531–1555, 2004.

[19] A. Asaithambi, V. Valev, A. Krzyzak, and V. Zeljkovic, “A
new approach for binary feature selection and combining clas-
sifiers,” In Proc. of HPCS, 2014.

[20] C. Premebida, J. Carreira, J. Batista, and U. Nunes, “Pedes-
trian detection combining rgb and dense lidar data,” In Proc.
of IROS, 2014.

[21] Jan. Hosang, M. Omran, R. Benenson, and S. Bernt, “Taking a
deeper look at pedestrians,” In Proc. of CVPR, 2015.

[22] A. Gonzalez, G. Villalonga, J. Xu, D. Vazquez, J. Amores, and
A. Lopez, “Multiview random forest of local experts combin-
ing rgb and lidar data for pedestrian detection,” In Proc. of IV,
2015.

[23] J. Hosang, R. Benenson, P. Dollar, and B. Schiele, “What
makes for effective detection proposals?,” TPAMI, vol. 38, no.
4, pp. 814–830, 2016.

2049


