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a b s t r a c t 

Despite significant progress in machine learning, pedestrian detection in the real-world is still regarded 

as one of the challenging problems, limited by occluded appearances, cluttered backgrounds, and bad 

visibility at night. This has caused detection approaches using multi-spectral sensors such as color and 

thermal which could be complementary to each other. In this paper, we propose a novel sensor fusion 

framework for detecting pedestrians even in challenging real-world environments. We design a convolu- 

tional neural network (CNN) architecture that consists of three-branch detection models taking different 

modalities as inputs. Unlike existing methods, we consider all detection probabilities from each modality 

in a unified CNN framework and selectively use them through a channel weighting fusion (CWF) layer to 

maximize the detection performance. An accumulated probability fusion (APF) layer is also introduced to 

combine probabilities from different modalities at the proposal-level. We formulate these sub-networks 

into a unified network, so that it is possible to train the whole network in an end-to-end manner. Our 

extensive evaluation demonstrates that the proposed method outperforms the state-of-the-art methods 

on the challenging KAIST, CVC-14, and DIML multi-spectral pedestrian datasets. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

Pedestrian detection has been a vital problem of machine learn-

ng due to its paramount relevance in commercial systems, span-

ing from self-driving cars to autonomous surveillance [1] . Recent

dvances in color sensor technologies and learning-based detection

lgorithms have encouraged the performance in several scenarios.

owever, a pedestrian may appear under varying conditions of il-

umination, weather, resolution, and occlusions. These restrictions

ake pedestrian detection in a color image more challenging. 

Most effort s on traditional pedestrian detection using color sen-

ors have focused on two key components: feature representa-

ion and classifier. The first one is the design of a feature to en-

ode pedestrian characteristics reliably. Conventionally, thanks to

he great success of histograms of oriented gradients (HOG) [2] and

ggregated channel features (ACF) [3] , many other variants and

ombinations have been proposed in the last decade, such as inte-

ral channels [4] . The second main component is the design of the

lassifier. For this, support vector machines (SVM) [5] is the most

opular choices because of their theoretical guarantee, extensibil-

ty, and good performance. Random forest ensembles [6] have also
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een used as an alternative type of classifier for pedestrian detec-

ion. However, an insurmountable gap exists between these hand-

rafted methods and human perception ability in pedestrian de-

ection. More recently, there has been an explosion of pedestrian

etection models based on convolutional neural networks (CNNs)

7] . Owing to their high capacity to represent discriminative fea-

ures and distinguish the pedestrian from background clutter [8] ,

NN-based approaches have achieved substantially promising re-

ults compared to the state-of-the-art approaches, such as region-

ased CNN (R-CNN) [9] , spatial pyramid pooling network (SPP-

ets) [10] , Fast R-CNN [11] , Faster R-CNN [12] , and multi-scale CNN

MS-CNN) [13] . 

In parallel to all these works, there is a relatively unexplored

rea in the field of pedestrian detection, i.e., multi-spectral sen-

or fusion. Multi-spectral fusion approaches supplement the data

f color images with complementary information obtained from

ther spectral sensors. The thermal (i.e., long-wavelength infrared)

amera has been one of the promising choices as it encodes the

emperature information in complex scenarios such as background

lutter or lack of illumination. Since ambient lighting has little ef-

ect in thermal imaging, the thermal camera has been widely used

n face recognition [14] , and action recognition [15] . With regard to

edestrian detection, the thermal image usually presents clear sil-

ouettes of human objects [16,17] , and can thus help boost pedes-

rian detection performance. However, except for very recent ef-
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forts [18,19] , multi-spectral pedestrian detection has not been stud-

ied thoroughly. It is still an open question that how color and ther-

mal images could be fused appropriately to obtain an optimal syn-

ergy. 

In this paper, we design a unified CNN architecture to fuse

color and thermal information in an end-to-end manner where

complementary information can boost pedestrian detection perfor-

mance even under challenging real-world environments. A key ob-

servation that emerges from our analysis of multi-spectral pedes-

trian detection is that if either color and thermal image is signifi-

cantly degraded, the half-way fusion method in [18] compromises

the detection capability between color and thermal images, and

thus this method cannot guarantee an optimal performance. To

address this problem, we consider all detection probabilities from

color, thermal, and color-thermal fusion channels in a unified deep

CNN framework. Channel weighting fusion (CWF) and accumulated

probability fusion (APF) layers are introduced to selectively fuse

information from different modalities at a proposal-level. Impor-

tantly, our system fully integrates APF and CWF within a single

network, making it possible to train the whole network end-to-

end with a standard back-propagation algorithm. We demonstrate

the effectiveness of the proposed approach in several challenging

multi-spectral pedestrian benchmarks including KAIST [20] , CVC-

14 [21] , and our DIML. The main contributions of this work are

summarized as follows: 

• We propose a unified CNN architecture for the task of multi-

spectral pedestrian detection and formulate the whole network

to be learned in an end-to-end manner. 
• Unlike existing multi-spectral fusion techniques [18] , we com-

prehensively utilize color, thermal, color-thermal fusion fea-

tures to maximize detection performance by synergistically us-

ing their detection probabilities with channel weighting fusion

(CWF) and accumulated probability fusion (APF). 
• The proposed system significantly reduces the missing rate of

baseline method [18] by 5.60%, yielding a 31.36% overall missing

rate on the KAIST multi-spectral pedestrian benchmark [20] . 

This manuscript extends its preliminary conference version

[19] with the following major differences: (1) We reformulate pre-

vious shallow modules, such as region proposal detection and

classification modules, as deep architectures to learn an optimal

feature representation in an end-to-end manner; (2) To suppress

false positives, the probability accumulation scheme is extended by

leveraging a spatial similarity among neighboring proposals; (3) an

extensive comparative study of the proposed method is performed

with various datasets qualitatively and quantitatively. 

The remainder of this paper is organized as follows.

Section 2 describes related works on pedestrian detection.

Section 3 provides the motivation for our work. We present the

proposed method in Section 4 . Experimental results and discus-

sions are provided in Section 5 , and we conclude the paper in

Section 6 . 

2. Related work 

This section describes related works on pedestrian detection

methods, including deep networks for object or pedestrian detec-

tion and multi-spectral fusion approaches for pedestrian detection

or other computer vision tasks. 

Deep networks for object detection Traditional methods for

object detection based on handcrafted features, such as HOG [2] ,

ACF [3] , and integral histogram [4] , combined with shallow ma-

chine learning schemes, such as SVM [5] and random forest [6] ,

have shown limited capacities to provide reliable detection perfor-

mances. Over the past few years, deep convolutional neural net-

works (CNNs) based approaches have become increasingly popu-
ar owing to their reliability in object detection tasks. One of the

epresentative studies is R-CNN [9] , which utilizes convolutional

ctivation features as in [22] to localize the object among object

roposal candidates. However, it performs a CNN forward pass for

ach object proposal independently, and hence its computation is

ery slow. To overcome these limitations, SPP-nets [10] and Fast R-

NN [11] were proposed to speed up R-CNN by sharing the com-

utation on convolutional features. Especially, Fast R-CNN [11] pro-

osed a region-of-interest (RoI) pooling scheme that reshapes in-

ermediate features as the desired proposal size. However, these

ethods showed a region proposal computation is a bottleneck.

o address this problem, Faster R-CNN [12] proposed a region pro-

osal network (RPN) that shares full-image convolutional features

ith the detection network, thus enabling nearly cost-free region

roposal estimation. However, these methods have disadvantages

n that they cannot detect a small-sized object due to the collaps-

ng bin problem associated with RoI pooling. To solve this, Cai et al.

13] proposed a method that repeatedly performs the detection

rocess at multiple levels of features. Gidaris and Komodakis(2015)

23] introduced a bounding box voting (BBV) scheme that refines

ounding boxes by leveraging the neighboring proposals, and this

cheme is only considered at bounding box re-localization process.

Deep networks for pedestrian detection In the field of pedes-

rian detection, deep models have been formulated to represent

edestrian-specific features. One of the pioneering works is multi-

tage unsupervised feature learning [24] that automatically learns

ierarchical features with unsupervised sparse auto-encoder. Li

t al. [25] proposed a scale gate function to solve scale problems

y capturing different characteristic features as image sizes. Tian

t al. [26] solved the partial occlusion problem by considering the

emantic attributes of people and scenes. While the techniques

entioned above provide reliable detection performance to some

xtent, none of them are designed to deal with bad lighting condi-

ions; hence, their performance degrades in challenging scenarios,

specially in nighttime situations. 

Multi-spectral fusion based computer vision tasks To solve

he inherent limitations of a color camera such as bad visibility

nd sensitivity to noise in pool lighting conditions, multi-spectral

usion approaches have been popularly used to supplement the

ata provided in a color image in various applications. Thanks to

he success of multi-spectral image registration techniques [27,28] ,

ulti-spectral information is well combined, and various multi-

pectral applications have been suggested, by using color and near-

nfrared (NIR) images, or color and thermal images. Feng et al.

29] proposed an image dehazing approach by modeling a dissimi-

arity between color and NIR images. The NIR image was also used

s a guidance image in image denoising applications [30] . 

Multi-spectral fusion for pedestrian detection Since a pedes-

rian reveals distinct properties related to temperature information

n a thermal image, the color and thermal image combination can

nable us to overcome the inherent limitations in pedestrian de-

ection. Recently, the KAIST benchmark [20] facilitated the study of

edestrian detection in a large-scale multi-spectral dataset, where

t provided aligned color and thermal image pairs obtained us-

ng a beam splitter technique. The CVC-14 benchmark [21] also

rovided continuous video information of color and thermal im-

ges. Multispectral ACF (MACF) [20] , as a pioneering work of multi-

pectral (i.e., color and thermal) fusion based pedestrian detec-

ion, has shown that additional thermal information could help to

ighly boost the pedestrian detection performance, especially in

ight environments. However, this method showed limitations due

o their handcrafted features that do not have enough discrimina-

ive power to represent a pedestrian in challenging circumstances.

ecently, Liu et al. [18] proposed a convolutional network to fuse

olor and thermal images as a variant of Faster R-CNN [12] . How-

ver, their fusion technique that extracts fused features from both
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Fig. 1. Examples of complementary detection results using convolutional features from only color, thermal, and color-thermal fusion channels. Boxes with yellow and green 

color represent ground-truth and estimated bounding boxes, respectively. With a thermal image in (a), the pedestrian candidates are detected using individually learned 

features on (b) the color image only, (c) the thermal image only, and (d) the existing fusion feature [18] on both color and thermal images. The existing fusion method 

[18] cannot fully reveal the complementary potential between color and thermal images, but rather individually learned features on each modality can produce reliable 

performances in some circumstances. By synergistically fusing these features, our system can maximize the pedestrian detection performance under all challenging circum- 

stances. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 2. Examples of pedestrians in multi-spectral color and thermal images. (a) 

When the thermal image is saturated due to sunlight or ambient temperature, a 

color image can be a reliable cue to detect a pedestrian. (b) However, when the 

color image is degraded in bad lighting conditions, thermal image can contribute 

to detecting a pedestrian robustly. By jointly leveraging both color and thermal im- 

ages, our approach overcomes these challenging limitations. 
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olor and thermal images compromises the detection performance;

ence, they cannot guarantee an optimal performance. Unlike this,

ur method estimates detection probabilities from not only such a

used feature but also each distinctive feature from each modality

imultaneously. 

. Motivation 

Traditional methods such as half-way fusion strategy [18] use

eparate sub-networks to extract the features for each modality

nd combine them through an additional fully-connected layer to

xtract complementary pedestrian features for both modalities. In

his paper, we argue that this strategy may not fully reveal the

omplementary potential between color and thermal images. The

alf-way fusion [18] cannot cover diverse situations, as shown in

ig. 1 . It fails to detect pedestrians as in Fig. 1 (d). Conversely, these

edestrians are detectable by considering the single image modal-

ty only, which is shown in Fig. 1 (b) and (c). These examples illus-

rate the fact that the half-way fusion method [18] is not sufficient

o achieve the best multi-spectral pedestrian detection synergy. In

ome cases, the individually learned network for each modality

an provide reliable performance compared to the fusion-based ap-

roach. Furthermore, we observed that if either the color or ther-

al image is significantly degraded, the detection performance of

he half-way fusion method [18] is compromised, thus providing

imited performance. We summarize such challenging conditions

s follows: 

• The thermal image is occasionally saturated by sunlight or am-

bient temperature. (see Fig. 2 (a)) 
• Under bad lighting conditions, such as nighttime, the color im-

age has low visibility and is vulnerable to noise. (see Fig. 2 (b)) 

Nevertheless, we still benefit from the half-way fusion method

18] when both color and thermal images provide useful informa-

ion in depicting pedestrians. Based on the discussion and observa-

ion, we propose to consider all pedestrian probabilities from not

nly each modality but also the half-way fusion method in a uni-

ed deep CNN framework. To realize this, our method focuses on

using the three-branch information in a boosting manner. 

. Unified multi-spectral pedestrian detection 

.1. Problem formulation and overview 

Given a color image I and a thermal image F , the objective

f our pedestrian detection system is to localize the location and

cale of a pedestrian robustly even under challenging conditions

uch as bad visibility or noise during nighttime. Formally, for each

ixel i = [ i x , i y ] 
T , the pedestrian proposal candidate (i.e., location

nd scale) and the pedestrian probability are first estimated, and

he pedestrian is then detected in an image domain. Our approach

elongs to sensor fusion approaches, and uses color and thermal

mages jointly to leverage the complementary information from

ach modality synergistically. Unlike conventional fusion schemes,

.g., half-way fusion strategy [18] , that utilize only common pedes-

rian features from each modality, our method is formulated to uti-

ize not only such a fused feature but also each distinctive feature

rom each modality simultaneously. 

By leveraging CNNs [22] , our pedestrian detection method is

ormulated as three sub-networks, including feature extraction net-

ork, region proposal network, and inference network, as shown

n Fig. 3 . Concretely, the feature extraction network is designed

o extract distinctive features of pedestrians from each modality,

hich can be encoded on a color and thermal image indepen-

ently. To boost the detection performance, we also extract a fused

eature that encodes complementary information between each

odality through the concatenation of intermediate convolutional

ctivations. Based on the observation that these three kinds of fea-

ures can encode each distinctive characteristic and provide differ-

nt robustness depending on environments, the pedestrian prob-

bilities are estimated from all convolutional features to fully uti-

ize complementary information from each modality. In the region

roposal network, the region proposal generation is formulated on

he fused pedestrian feature. Furthermore, we propose a channel

eighting fusion (CWF) layer to determine an optimal pedestrian

eature among three-branch features at each proposal. In the infer-

nce network, we propose an accumulated probability fusion (APF)

ayer. To suppress false positives and estimate optimal probabilities
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Fig. 3. The illustration of our overall pedestrian detection framework. Our proposed network takes a color-thermal image pair as inputs and produces the pedestrian location 

as outputs. Our proposed network consists of three sub-networks, including a feature extraction network, region proposal network, and inference network. In the resultant 

images, boxes with yellow and green color represent ground-truth and estimated bounding boxes, respectively. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Visualization of convolutional features using linear discriminant analysis 

(LDA), extracted on (b) color A I , (c) thermal A F , and (d) fusion channel A C in com- 

parison to (a) existing handcrafted feature (i.e., ACF [3] ) under (top) day and (bot- 

tom) night environments. Red and blue dots indicate negative and positive pedes- 

trian samples, respectively. Compared with ACF [3] , the state-of-the-art handcrafted 

method, the proposed convolutional features are more discriminative to reliably 

distinguish the pedestrian and non-pedestrian patches. Furthermore, three chan- 

nel features have shown different distributions depending on day and night envi- 

ronments, and thus an effective fusion technique for these convolutional features 

is essential. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 
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from each feature, the ACF layer accumulates the pedestrian prob-

abilities of each feature with neighboring bounding boxes at the

proposal-level. Since our network consists of fully convolutional

modules, it can be learned in an end-to-end manner without any

approximation or handcrafted processes. 

4.2. Network architecture 

In this section, we first describe the details of our pedestrian

detection method, consisting of three sub-networks, namely fea-

ture extraction network, region proposal network, and inference

network, and then show how they can be learned in an end-to-

end manner. 

4.2.1. Feature extraction network 

Compared to previous methods detecting pedestrians in an im-

age only [12] , pedestrian detection using both color and thermal

images can provide an outstanding performance even under chal-

lenging conditions such as night environments. Inspired by this,

some approaches have tried to utilize both color and thermal im-

ages to detect pedestrians (e.g., half-way fusion [18] ). However, as

exemplified in Fig. 1 , the fused pedestrian feature extracted from

both color and thermal images cannot guarantee consistent robust

performance in all situations. 

Based on these observations, we propose three-branch feature

extraction networks, consisting of color feature extraction net-

work, thermal feature extraction network, and fused feature ex-

traction network. By independently learning the pedestrian fea-

ture from each modality, our pedestrian detection method can ex-

tract distinctive properties of each modality while benefiting from

the complementary property of each modality through the fused

pedestrian feature. The convolutional features estimated from each

network, denoted as A I , A F , and A C , are used to estimate pedestrian

probabilities simultaneously, as described in the following section. 

Similar to existing detection methods [12] , each feature ex-

traction network is formulated as successive convolutions. For the

fused feature extraction network, we first extract the intermedi-

ate convolutional activations from color and thermal feature ex-

traction networks and then concatenate them. For a fusion feature,

we utilize the convolutional activations of ‘Conv4-3’ due to their

robustness and computational efficiently. Moreover, we also build

additional convolutional layers with the same size as ‘Conv5’ after

the fusion concatenation and Network-in-Network (NIN) layer [18] ;

thus, A , A , and A have the same size of feature dimension. 
I F C 
Fig. 4 visualizes the distinctive and complementary properties

f convolutional features in our network in comparison to the

andcrafted method, i.e., ACF [3] , without any techniques such as

ard negative mining scheme or jittering the data, on the KAIST

ulti-spectral benchmark [20] . Fig. 4 (b)–(d) shows examples of

inear discriminant analysis (LDA) of each convolutional feature, A I ,

 F , and A C , to distinguish the pedestrian and non-pedestrian can-

idates. We extracted these convolutional features on pedestrian

egion proposals as outputs of the region proposal network, which

ill be described in details in the following section. From these

ase studies, we can observe two kinds of intuitions. First, com-

ared to handcrafted features such as ACF [3] that cannot distin-

uish the pedestrian reliably, our convolutional features are more

iscriminative even under challenging day and night environments,

wing to their deeper architectures. Second, according to environ-

ents such as day and night, each convolutional feature has differ-

nt properties and robustness. There is no single feature to provide

onsistently reliable performance for all situations. Thus, an effec-
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Fig. 5. Comparison of pedestrian detection performance using convolutional fea- 

tures by varying the number of proposals, including (a) recall vs. the number of 

proposals and (b) recall vs. intersection of union (IoU). Since the performance gap 

between results using all three channels ( A I + A F + A C ) and results using only fused 

channel ( A C ) is marginal, our method only utilizes the fused convolutional feature 

A C with 300 proposals. 
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ive fusion technique of these convolutional features is essential to

aximize the detection performance. 

.2.2. Region proposal network 

Based on the estimated convolutional features, the pedestrian

andidates can be hypothesized using an additional network to

enerate pedestrian proposal candidates. Similar to [18] , we adopt

he region proposal network (RPN) that takes convolutional fea-

ures as inputs and outputs a set of rectangular proposals parame-

erized by a tuple T (i ) = [ i x , i y , � i x , � i y ] 
T , where ( i x , i y ) is the cen-

er point and ( � i x , � i y ) are horizontal and vertical diameters of

he bounding box, each with an anchor probabilities P A ( i ), where

nchor means the pre-defined reference bounding box. We also

odel this process with successive convolutions. Even though all

hree-branch convolutional pedestrian features, A I , A F , and A C , can

e used for the region proposal network, our method only utilizes

he fused convolutional feature A C . 

Fig. 5 shows the pedestrian proposal detection performance on

he KAIST multi-spectral benchmark [20] . In these case studies, we

xtracted 300 pedestrian proposals from each channel feature. As

hown in the statistics, the accuracy of 900 pedestrian proposals

onsisting of 300 proposals from each channel was similar to the

ccuracy of 300 proposals from the fusion channel only. Thus, we

bserve that the capacity of pedestrian proposal detection satu-

ates at 300 proposals, and there is no need to extract proposal

andidates from all features A I , A F , and A C ; therefore, we utilize A C 

s an input for the region proposal network. 

To generate pedestrian region proposals, we then slide a small

etwork over the feature A C . This small network takes a 3 × 3 spa-

ial window of the input convolutional feature map, and each slid-

ng window is mapped to a lower-dimensional feature. It is then

ed into three sibling fully connected layers for box classification

oss, box regression loss, and channel weighting fusion loss, which

ill be explained in the following section. 

To detect reliable pedestrian bounding boxes among anchors,

e train a regression model for each pedestrian bounding box

 (i ) = [ i x , i y , � i x , � i y ] 
T . Since it is difficult to directly regress this

ith the ground truth bounding box T ∗(i ) = [ i ∗x , i ∗y , � i ∗x , � i ∗y ] T , our

etwork is instead learned to minimize the difference of transfor-

ations between T ( i ) and T A ( i ) and those between T ∗( i ) and T A ( i ),

here T A ( i ) is the pedestrian bounding box of the pre-defined an-

hor, which will be described in the following section. 

Channel weighting fusion (CWF) layer In our system, at each

edestrian proposal, three kinds of probabilities can be estimated

rom A I , A F , and A C . As described earlier, the three probabilities

ave complementary information of each feature extraction net-

ork. To boost the detection performance, we propose a channel
eighting fusion (CWF) layer as a gating function that determines

hich channel can maximize the detection performance at each

roposal candidate. This process can be implemented as a classi-

cation problem, where for each proposal candidate T ( i ) we learn

he network to choose the label S ∈ { S I , S F , S C }. As shown in Fig. 3 ,

he CWF layer is also located within the region proposal network,

nd hence, only A C is used to estimate S . Since A C includes com-

lementary information of color and thermal channels, the channel

election based on A C is enough to provide optimal performance,

hich will be verified in the Section 5.2 experimentally. 

Intuitively, the class label S from the CWF layer is desired to

atisfy the following constraints. For a color image having high-

uality visibility, the class label S I is chosen to maximize the de-

ection performance. Furthermore, for thermal image encoding a

igh distinctive property of a pedestrian at nighttime, the class la-

el S F is chosen. When both color and thermal images have good

isibility for pedestrian detection, the class label S C is chosen. 

.2.3. Inference network 

Followed by the convolutional features on each pedestrian pro-

osal, we design the inference network to determine the pedes-

rian probability and location at each pedestrian proposal. To max-

mize the pedestrian detection performance, we adopt the region-

f-interest (RoI) pooling scheme [11] , followed by sequential fully-

onnected layers for determining the pedestrian. To fuse the prob-

bilities as outputs from each channel, we propose an accumulated

robability fusion (APF) layer that maximizes the detection perfor-

ance by considering the probabilities of neighborhood proposal

andidates. It should be noted that our proposed network is for-

ulated with a fully convolutional architecture and can therefore

e learned in an end-to-end manner. 

Region-of-interest (RoI) pooling Since each pedestrian convo-

utional feature is computed in an image domain and each pedes-

rian proposal has a different size, each convolutional feature at

edestrian proposals should be resized to a fixed size to be ap-

lied to the fully-connected layer. Inspired by [11] , we convert the

eatures inside any valid RoI into a small feature map with a fixed

patial extent of H × W , where H and W are layer hyper-parameters

ndependent of any particular RoI. Since our network design is

ased on the VGG-Net model [31] , these parameter are set to be

ompatible with the following fully connected layer. For each RoI,

he pedestrian probability from each channel can be determined as

 I ( i ), P F ( i ), and P C ( i ). 

Accumulated probability fusion (APF) layer One of the ma-

or problems encountered in the pedestrian detection task is false

ositives, where the pedestrian-like features from non-pedestrian

roposals are erroneously detected as pedestrians. These false pos-

tives reduce the overall detection accuracy and further produce

alse alarms in intelligent vehicle systems. In pedestrian detection,

he false positives frequently appear within two kinds of bound-

ng box cases, including partially overlapped boxes and pedestrian-

ike boxes. First, the pedestrian probabilities of partially overlapped

oxes are higher than those of other proposals since they partially

ontain pedestrian parts, which will be false positives, as exempli-

ed in Fig. 6 . As in [12] , a simple non-maximal suppression (NMS)

rocess cannot guarantee satisfactory results under these circum-

tances. Second, for visually pedestrian-like boxes, false positives

requently appear at an isolated region, as also seen in Fig. 6 . 

These two kinds of problems can be overcome by considering

he correlation of its neighborhood proposals. Most existing de-

ection methods [12] consider each pedestrian proposal indepen-

ently, and thus they are sensitive to false positives. To overcome

his, we propose an accumulated probability fusion (APF) layer that

ccumulates the estimated probabilities at each pedestrian pro-

osal with its neighboring proposals. To realize this, the neighbor-

ood system N ( i ) is first defined for each pedestrian proposal T ( i ),
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Fig. 6. Examples of an image to produce false positives in (a) and accumulated 

pedestrian probabilities on the image. In (b), red color represents high pedes- 

trian probabilities and yellow color represents low pedestrian probabilities. With 

proposal-wise accumulation processes in an accumulated probability fusion (APF) 

layer using neighboring proposal candidates as in (c), the false positives can be 

suppressed effectively. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 
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and T ( k ) for k ∈ N ( i ) are neighboring pedestrian proposals deter-

mined by considering a spatial similarity K(i, k ) = ‖ T (i ) − T (k ) ‖ 2 .
With these neighboring pedestrian proposals, the pedestrian prob-

ability of each candidate can be updated by accumulating the

probabilities of neighboring proposals as 

P ′ (i ) = 

1 

N P 

∑ 

k ∈ N(i ) 

∑ 

l∈{ I,F,C} 
exp (−K(i, k )) S l (k ) P l (k ) , (1)

where P l ( k ) is the pedestrian probability estimated at neighbor-

ing pedestrian proposals T ( k ) and the normalization factor is

N P = 

∑ 

k ∈ N(i ) 

∑ 

l∈{ I,F,C} exp (−K(i, k )) S l (k ) . It is designed to make

spatially-similar proposals contribute more to estimating a final

pedestrian probability with label l for each channel, reducing the

possibility of false positives. Note that, similar to our scheme, Gi-

daris and Komodakis [23] proposed a bounding box voting (BBV)

scheme that also considers the neighboring proposals. However, it

only focuses on the re-positioning of the bounding boxes, leading

to a marginal improvement in detection accuracy, which will also

be discussed in experiments. On the other hand, our APF layer

focuses on re-scoring pedestrian probabilities from the neighbor-

ing proposals, and improves detection accuracy by eliminating the

false positives. 

Differentiability of APF layer For end-to-end learning of the

proposed system, the derivatives for the ACF layer much be com-

putable, so that the gradients of the final loss can be back-

propagated to the feature extraction network and region proposal

network. Since our ACF layer is formulated as a linear summation,

its derivative can be easily computed. Specifically, the derivative of

the final loss L with respect to P l ( k ) can be formulated as 

∂L 

∂P l (k ) 
= 

∂L 

∂P ′ (i ) 

∂ P ′ (i ) 

∂P l (k ) 

= 

∂L 

∂P ′ (i ) 

1 

N P 

exp (−K(i, k )) S l (k ) . (2)

This enables us to learn our network in an end-to-end manner.

Table 1 represents the proposed network configuration. 

4.3. Network training 

To learn our overall network, consisting of a feature extraction

network, region proposal network, and inference network simulta-

neously, we employ two loss functions for the region proposal net-

work and inference network. Each loss function consists of bound-

ing box classification loss and bounding box regression loss with

respect to ground truth pedestrian bounding boxes. Furthermore,

to learn the CWF layer, we employ an additional classification loss.

Similar to other pedestrian detection methods [12] , our training
rocedure needs the ground truth pedestrian bounding box T ∗. To

ummarize, the total loss function is formulated as a multi-task

oss as follows: 

 total = L RPN (T , P A , S, T 
∗, P ∗A ) + L APF (T ′ , P ′ , T ∗, P ∗) . (3)

Since our network is learned with two individual loss functions,

he learning schedule and initialization scheme are critical issues.

imilar to [12] , to unify the three sub-networks seamlessly, we use

 training scheme that alternates between fine-tuning for the re-

ion proposal network and then fine-tuning for the inference net-

ork, while keeping the proposal fixed, enabling a fast conver-

ence and a unified network. As the first stage of the iteration,

e set a class label as a random label, and the CWF layer is not

earned because it is unstable in the initial learning. During train-

ng, the supervision of class variable S ∗ is determined in an unsu-

ervised manner, which will be described in the following section.

.3.1. Region proposal network loss 

For training the region proposal network, we assign an anchor

lass label to each proposal candidate. We assign a positive label

(P ∗
A 
(l) = 1) of the l -th anchor if the anchor is positive, and a neg-

tive label (P ∗
A 
(l) = 0) if the anchor is negative. With these defi-

itions, we minimize an objective function of the following multi-

ask (classification and regression) loss such that 

 RPN (T , P A , S, T 
∗, P ∗A ) = L 

CW F 
RPN (S) 

+ λcls 
RPN 

∑ 

l 
L 

cls 
RPN (P A (l) , P ∗A (l)) 

+ λreg 
RPN 

P ∗A (l) 
∑ 

l 
L 

reg 
RPN 

(T (l) , T ∗(l)) , (4)

here λcls 
RPN 

and λreg 
RPN 

are balancing parameters between classifica-

ion and regression loss, respectively. The classification loss L 

cls 
RPN 

s the log loss over kinds of anchors. For the regression loss, we

se L 

reg 
RPN 

(T (l) , T ∗(l)) = �(R (l) − R ∗(l)) where � is the robust loss

unction (smooth L 1 ) defined in [11] . The regression loss is acti-

ated only for positive sample (P ∗
A 
(l) = 1) ; otherwise, it is disabled

(P ∗
A 
(l) = 0) . For bounding box regression, we adopt the parame-

erization of transformation vector of the four coordinates R (l) =
 r x , r y , � r x , � r y ] 

T following [12] , defined such that 

r x = (l x − l A x ) / � l A x , r y = (l y − l A y ) / � l A y , 

 r x = log (� l x / � l A x ) , � r y = log (� l y / � l A y ) , (5)

here [ l A x , l 
A 
y , � l A x , � l A y ] 

T represents the l -th anchor box. Similarly,

or a ground truth box T ∗(l) = [ l ∗x , l ∗y , � l ∗x , � l ∗y ] T , the transformation

ector R ∗( l ) also can be computed. 

Furthermore, to select an optimal feature channel among three-

ranch feature extraction networks at each proposal, the CWF layer

mploys the additional classification loss L 

CW F 
RPN 

as a log loss func-

ion. However, unlike other loss functions, the ground truth label

 

∗ cannot be estimated. To address this limitation, we formulate a

eakly-supervised learning scheme, where tentative label S ∗ is de-

ermined during the iteration to produce the highest probability.

y using this tentative class label S ∗, we learn the CWF layer in a

eakly-supervised manner. 

.3.2. Accumulated probability fusion loss 

Similar to the region proposal network loss L RPN , the APF layer

oss L APF consists of classification loss and regression loss func-

ions. However, unlike L RPN , L APF is defined with accumulated

robability, which produces more reliable pedestrian probability.

oncretely, we also minimize the following the multi-task loss

uch that 

 APF (T ′ , P ′ , T ∗, P ∗) = λcls 
APF L 

cls 
APF (P ′ , P ∗) 

+ λreg 
APF 

P ∗L 

reg 
APF 

(T ′ , T ∗) , (6)
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Table 1 

Network configuration of our multi-spectral pedestrian pedestrian method. 

Color/thermal feature extraction network 

Conv1-1 Conv1-2 Conv2-1 Conv2-2 Conv3-1 Conv3-2 Conv3-3 Conv4-1 Conv4-2 Conv4-3 Conv5-1 Conv5-2 Conv5-3 

kernel 3 × 3 3 × 3 3 × 3 3 × 3 3 × 3 3 × 3 3 × 3 3 × 3 3 × 3 3 × 3 3 × 3 3 × 3 3 × 3 

channel 64 64 128 128 256 256 256 512 512 512 512 512 512 

stride 1 2 1 2 1 1 2 1 1 2 1 1 1 

Fusion feature extraction network Region proposal network Inference network 

NIN 

a Conv5-1 Conv5-2 Conv5-3 sliding cls reg CWF FC6 FC7 cls reg APF 

kernel 1 × 1 3 × 3 3 × 3 3 × 3 3 × 3 1 × 1 1 × 1 1 × 1 7 × 7 1 × 1 1 × 1 1 × 1 1 × 1 

channel 512 512 512 512 512 18 36 3 1024 4096 2 8 2 

stride 1 1 1 1 1 1 1 1 - - - - - 

a Network-in-Network layer [18]. 
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Table 2 

Evaluation of our proposed method by varying the fusion 

strategies on the KAIST multi-spectral benchmarks [20] . We 

measure an average miss rate (%) for qualitative evaluations. 

Methods Daytime Nighttime All-day 

Ren et al. [12] on I 43.17 71.40 51.86 

Ren et al. [12] on F 46.76 35.57 43.04 

Liu et al. [18] on I, F 38.14 34.42 36.96 

Average fusion 36.42 37.21 36.43 

Multiplication fusion 37.80 38.90 37.95 

Max fusion 35.83 36.01 35.65 

CWF 32.87 32.52 32.61 

CWF with A I , A F , A C 32.83 32.45 32.56 

CWF + BBV [23] 32.63 32.37 32.45 

CWF + APF 31.79 30.82 31.36 
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here λcls 
APF 

and λreg 
APF 

are balancing parameters between classifi-

ation and regression loss. L 

cls 
APF 

and L 

reg 
APF 

are defined similar to

 

cls 
RPN 

and L 

reg 
RPN 

but different to detect the pedestrian bounding box.

e assign a positive label (P ∗ = 1) to the proposal candidate that

as an intersection-over-union (IoU) overlap higher than 0.7 with

round-truth bounding boxes and a negative label (P ∗ = 0) whose

oU is lower than 0.3. L 

cls 
APF 

is a log loss employed to classify the

edestrian or non-pedestrian. For the regression loss, we use a pa-

ameterization B = [ b x , b y , � b x , � b y ] 
T similar to that of RPN such

hat L 

reg 
APF 

(T ′ , T ∗) = �(B − B ∗) , where B and B ∗ are computed simi-

ar to (5) with the standard of the pedestrian proposal T . By simul-

aneously minimizing the overall loss functions of L RPN and L APF ,

ur overall network is learned to provide optimal pedestrian de-

ection performance. 

. Experimental results and discussion 

.1. Experimental settings 

For our experiments, our network was implemented using the

ensorFlow machine learning library [32] , and it was trained on

 NVIDIA GeForce GTX TITAN X GPU. For three-branch feature

xtraction networks, we used the ImageNet pre-trained VGG-Net

31] from the bottom ‘Conv1’ to the ‘Conv5-3’ layer as initial pa- 

ameters. In our experiments, our network was implemented with

he following fixed parameter settings for all datasets: { H, W } =
 7 , 7 } , { λcls 

RPN 
, λreg 

RPN 
, λcls 

APF 
, λreg 

APF 
} = { 1 , 10 , 1 , 10 } , and the number of

nchors was set to 9 similar to [12,18] . Furthermore, the sizes of

he anchors were defined as 32, 64, and 128, and the ratios of the

nchors were set to 0.5, 1, and 2. The number of neighboring pro-

osals was set to 5. To train the network, the standard stochas-

ic gradient descent with momentum was employed for optimiza-

ion, where the initial learning rate, momentum, and weight de-

ay were set to 0.001, 0.9, and 0.0005, respectively. By default, an

oU threshold of 0.5 was used for determining “true positives”. The

MS was applied to the APF layer in order to avoid redundant de-

ections. 

.2. Analysis of probabilistic fusion techniques 

We first evaluated two key components in our method, CWF

nd APF, in comparison to conventional fusion strategies, as pre-

ented in Table 2 . For quantitative evaluations, we used the KAIST

ulti-spectral pedestrian dataset [20] for a quantitative evaluation

ith the miss rate, which will be described in details in the fol-

owing section. The fusion based approach (i.e., half-way fusion

18] ) has shown more stable performances, when compared to the

xisting detection method [12] in a color or thermal image only.

nlike these approaches, our proposed method can be interpreted
o consider all these three networks, i.e., two independent net-

orks for each modality and one fused network. We first evaluated

he CWF layer (without the APF layer) in our method in compari-

on to direct fusion strategies, such as average, multiplication, and

ax fusion. As expected, these simple fusion schemes cannot pro-

ide stable performances for all scenarios; however, they perform

ather worse than existing fusion techniques [18] . Unlike these, our

WF method has shown outstanding performances for all scenarios

uch as daytime and nighttime, reducing the miss rate by 4.35%.

ven though the integration of A I , A F , and A C reduced the miss

ate of CWF slightly, our CWF that uses only A C is still employed

ue to its efficiency. Furthermore, this detection performance can

e boosted by considering the neighboring pedestrian proposals.

ompared to BBV [23] , our APF concentrates on suppressing false

ositives, thus improving the detection performance dramatically,

nd this reduces the miss rate of the CWF method by 1.25%. 

.3. Analysis of fusion feature representation 

In order to evaluate the performance gain when combining

arious levels of features and fusion schemes, we additionally

ompared the multi-spectral fusion methods by varying the level

f convolutional features on the KAIST multi-spectral pedestrian

ataset [20] in Table 3 . For these experiments, we evaluated the

esults using a single-level feature of ‘Conv5’ and a multi-level fea-

ure of concatenated ‘Conv4/5.’ Furthermore, we compared various

ulti-spectral fusion schemes such as simple concatenation, half-

ay fusion [18] , and our CWF + APF. 

Through these analyses, we derived two observations for the

usion feature representation. First, the detection accuracy can be

mproved when using a multi-level feature (‘Conv4/5’) within all

usion schemes, exemplified in [33,34] . However, the usage of a

ulti-level feature also requires higher computational complexity

ompared to that of a single-level feature. Thus, although the us-

ge of multi-level feature also provided the best performance with
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Table 3 

Comparison of detection results by varying the feature representation on the KAIST multi- 

spectral benchmark [20] . 

Fusion – – Concat. Half-way [18] CWF + APF 

Feature A I A F A I , A F A I , A F A I , A F A I , A F , A 
† 
C 

A I , A F , A C 

Conv5 51.86 43.40 37.33 36.96 34.90 31.54 31.36 ∗

Conv4/5 50.83 42.16 36.75 36.19 34.78 31.43 31.28 

† fusion in ‘Conv5’, ∗proposed method 

Table 4 

Comparison of computation time for handling an image size 640 × 480. 

Methods Choi et al. [19] Faster R-CNN [12] Half-way fusion [18] Ours 

Time (s.) 2.73 0.24 0.43 0.58 

Fig. 7. Comparison of detection results on the test set of KAIST multi-spectral benchmark [20] , in terms of (a) all-day, all scale, (b) daytime, all scale, (c) nighttime, all scale, 

(d) all-day, far scale, (e) daytime, far scale, and (f) nighttime, far scale. Note that in results on the far scale, a pedestrian appears on a small scale, thus providing more 

challenging scenarios. Compared to other methods, our network provides consistently stable performances across all scenarios. 
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a small margin in our method, we used a single-level feature of

‘Conv5,’ considering the trade-off between efficiency and accuracy.

Second, with the additional fusion channel ( A C ), our CWF + APF ap-

proach has shown dramatically improved performances in both

cases of using single-level and multi-level feature-based fusions,

compared to existing fusion methods such as simple concatenation

fusion and half-way fusion [18] . Especially, our method reduced
he miss rate by 5.60%, of which 3.54% is reduced by incorporat-

ng the fused feature information. Interestingly, when the fusion

etween multi-spectral channels is established in a deeper convo-

utional feature of ‘Conv5’ (denoted A 

† 
C 

), our approach has shown

educed accuracy because the number of layers used to fuse the

ulti-spectral channels was reduced. Thus, our proposed method

s formulated to fuse the multi-spectral channels in ‘Conv4’ fea-



K. Park et al. / Pattern Recognition 80 (2018) 143–155 151 

Fig. 8. Qualitative comparisons of detection results on the test set of KAIST multi-spectral dataset [20] . (From left to right) Thermal images with ground-truth, detection 

results from Choi et al. [19] , Faster R-CNN [12] with color and thermal channels, half-way fusion [18] , and the proposed method. 
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ure, followed by additional convolutional layers to make A C have

he same size of A I and A F . 

.4. Analysis of computational speed 

Table 4 evaluated the computational complexity of our method

ompared to the state-of-the-art algorithms in handling a color–

hermal image pair of a resolution 640 × 480. Even though our al-

orithm needs more computational time compared to other previ-

us algorithms, such as Faster R-CNN [12] and half-way fusion [18] ,

t provides the state-of-the-art performance under various chal-

enging situations. 

.5. Evaluation on the KAIST multi-spectral benchmark 

Dataset We evaluated our network on the popular KAIST multi-

pectral pedestrian dataset [20] , which contains 95,328 aligned

olor–thermal image pairs with a resolution of 640 × 480 and

03,128 annotations of pedestrian and cyclist classes. The dataset

as taken under various challenging scenarios such as nighttime.

he dataset also includes pedestrians in a far scale, which often

ppears in real-world driving scenarios. For the experiments, we

ampled images from training videos with two-frame skips, and

btained 7095 training images. The testing set contains 2252 im-

ges sampled from test videos with 30-frame skips, among which

455 images were captured during daytime and 797 images during

ighttime. 

Evaluation Figs. 7 and 8 show the quantitative and qualitative

omparison results on the KAIST multi-spectral benchmark [20] ,

espectively. For qualitative evaluation, we used a miss rate sim-

lar to [20] , where a lower miss rate indicates better detection

erformance on the same false positive per image (FPPI). The re-

ults indicate that Faster R-CNN [12] learned in color and ther-

al channels have shown reasonable performances during day-

ime, and their fusion scheme [18] also performs well on average.
owever, these results have shown complementary information for

ach modality. Thus, we can argue that the fusion of these three-

ranch fusion methods achieves better performance. Even though

hoi et al. [19] has provided reliable performances with its fusion

pproaches, it also has shown limited performances. Overall, the

etection rate was reduced in far scale pedestrians. Unlike these

ethods, in the quantitative results in Fig. 7 , our method achieves

he miss rate of 31.36% at all-day detection with all scales, which

s considerably better than the best available competitor’s 36.96%,

hich demonstrates that the proposed fusion framework definitely

mproves the pedestrian detection accuracy. 

.6. Evaluation on the CVC-14 multi-spectral benchmark 

Dataset We also evaluated our network on the CVC-14 color–

hermal day-night pedestrian sequence dataset [21] , which con-

ains 8518 aligned color–thermal sequential image pairs with 9319

edestrian annotations. This dataset was recorded by on-board

olor and thermal cameras at 20 Hz, both at a resolution of

40 × 480. It covered various challenging situations, e.g., many

edestrians at the same time in an image. The testing set of the

VC-14 dataset [21] contains 1433 images, among which 706 im-

ges were captured during daytime and 727 during nighttime. 

Evaluation Figs. 9 and 10 show the quantitative and qualitative

valuations on the CVC-14 multi-spectral benchmark [21] , respec-

ively. Similar to the above experiments, for quantitative evalua-

ions, we measured the miss rate. Our method achieves the miss

ate of 26.29% at all-day detection with all scales, which is consid-

rably better than the best available competitor’s 31.99%. Interest-

ngly, we observed that the overall miss rates decrease than those

n the KAIST benchmark [20] . This is because the CVC-14 bench-

ark [21] has a higher image quality and a larger pedestrian scale

ompared to that of the KAIST benchmark [20] . As shown in Fig. 9 ,

ur proposed model definitely outperforms other algorithms. Es-

ecially, this strength can be shown in the results of the far scale
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Fig. 9. Comparison of detection results reported on the CVC-14 multi-spectral pedestrian dataset [21] , in terms of (a) all-day, all scale, (b) daytime, all scale, (c) nighttime, 

all scale, (d) all-day, far scale, (e) daytime, far scale, and (f) nighttime, far scale. 

Fig. 10. Examples of detection results on the test set of CVC-14 multi-spectral pedestrian dataset [21] . (From left to right) Thermal images with ground-truth, detection 

results from Choi et al. [19] , Faster R-CNN [12] with color and thermal channels, half-way fusion [18] , and the proposed method. 
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Fig. 11. Comparison of detection results reported on the test set of DIML multi-spectral dataset, in terms of (a) all scale and (b) far scale. 

Fig. 12. Examples of detection results on the test set of DIML multi-spectral benchmark. (From left to right) The thermal images with ground truth, detection results from 

[19] , Faster R-CNN [12] with color and thermal channels, half-way fusion [18] , and the proposed method. 
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edestrian cases, which shows that our model also detects a small

edestrian well. 

Specifically, through the qualitative comparisons in Fig. 10 , we

valuated other characteristics of our fusion method. In the first

ow of Fig. 10 , we can observe that the performance in the color

hannel only decreases because of the shadow of the surround-

ng structure even in daytime circumstances. On the other hand,

he second row shows that the performance in the thermal chan-

el only was degraded by the surrounding complex environment.

hese two situations support the necessity of color–thermal fu-

ion. The third row shows that a very small pedestrian, which can-

ot be shown in the KAIST benchmark [20] , can be detected us-

ng our method. The last row represents a challenging situation

hat can occur under actual driving situations, where the detection

n the color channel frequently fails. To summarize, the results of

he CVC-14 dataset [21] demonstrated that the our fusion method

orks satisfactorily under challenging driving conditions. 
.7. Evaluation on the DIML multi-spectral benchmark 

Dataset We finally evaluated our network on our multi-spectral

edestrian detection benchmark built for indoor surveillance sce-

arios. In particular, the DIML multi-spectral dataset contains 1003

ligned color–thermal sequential frame pairs with 1792 pedestrian

nnotations. This dataset was recorded by color and thermal cam-

ras at 10 Hz, both at a resolution of 640 × 480. We used an u-

ova20C and an FLIR A65 camera. 

Evaluation For these experiments, we used the network model

re-trained on the KAIST benchmark [20] , which has similar char-

cteristics to our benchmark. In quantitative evaluations of Fig. 11 ,

ur method achieves a miss rate of 34.62% at all scales, consid-

rably better than the best available competitor’s 43.87%, thereby

howing that our algorithm works satisfactorily even in an indoor

urveillance system. Fig. 12 shows the qualitative evaluations, and

nables us to evaluate the pedestrian detection performance of
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methods in challenging situations of the surveillance system, such

as ambient temperature and light saturation. 

6. Conclusion 

We presented the unified convolutional neural network archi-

tecture for multi-spectral color and thermal pedestrian detection

even under challenging environments such as nighttime. In con-

trast to previous techniques, we adopted three-branch detection

models taking different image modalities as inputs. To fuse this

information simultaneously in a boosting manner, we proposed

channel weighting fusion layer and accumulated probability fu-

sion layer, formulated these sub-networks into a single network,

and trained the whole network in an end-to-end manner. Our ex-

tensive evaluations demonstrated that the proposed method out-

performs the state-of-the-arts on challenging multi-spectral pedes-

trian datasets. We believe that our proposed model can potentially

benefit other multi-spectral computer vision tasks in autonomous

driving systems or surveillance systems. 
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