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Abstract— A robust similarity measure called the Mahalanobis
distance cross-correlation (MDCC) is proposed for illumination-
invariant stereo matching, which uses a local color distribution
within support windows. It is shown that the Mahalanobis
distance between the color itself and the average color is
preserved under affine transformation. The MDCC converts
pixels within each support window into the Mahalanobis distance
transform (MDT) space. The similarity between MDT pairs is
then computed using the cross-correlation with an asymmetric
weight function based on the Mahalanobis distance. The MDCC
considers correlation on cross-color channels, thus providing
robustness to affine illumination variation. Experimental results
show that the MDCC outperforms state-of-the-art similarity
measures in terms of stereo matching for image pairs taken under
different illumination conditions.

Index Terms— Exposure, illumination, Mahalanobis distance,
similarity measure, stereo matching.

I. INTRODUCTION

STEREO matching is a fundamental problem for many
computer vision tasks such as view synthesis, autonomous

navigation, and 3-D reconstruction [1]. It aims to extract 3-D
scene information by finding correspondences between stereo
pairs taken at different viewpoints of the same scene. Current
state-of-the-art methods provide satisfactory results under the
color consistency condition, that is, corresponding pixels have
similar color distribution [2]. However, the color consistency
assumption is often violated due to various factors includ-
ing illumination source variations, non-Lambertian surfaces,
vignetting, device characteristics, and image noise, resulting
in a performance degradation [3].

To alleviate this problem, a number of matching meth-
ods have been proposed [3]. The seminal works proposed
normalized correlation approaches [4], [5], in which each
support window is normalized to reduce the effects of illu-
mination, and the correlation similarity is computed between
them. These approaches do not consider the correlation on
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cross-color channels and thus, they show limited performance
for stereo pairs taken under severe illumination variations.
To this end, a robust similarity measure called the Mahalanobis
distance cross-correlation (MDCC) is proposed. The MDCC
converts pixels within each support window into the Maha-
lanobis distance transform (MDT) space. Then, it computes
the correlation similarity between MDT vector pairs. The
Mahalanobis distance exploits vectorial color information from
the covariance of color channels. This means that the MDCC
considers correlation similarity on each color channel and
cross-color channel simultaneously, thus providing robustness
for illumination variations. Furthermore, to encode spatial
information even under illumination variation, the correlation
similarities are aggregated in both support windows with
asymmetric weight distributions based on the Mahalanobis
distance. In stereo matching frameworks, the MDCC estimates
more accurate disparity maps for stereo pairs taken under
different illumination conditions than state-of-the-art similarity
measures and even provides competitive performance under
exposure changes.

A. Related Works

The MDCC aims to estimate an accurate disparity map
for stereo pairs even if they are taken under different illu-
mination conditions, and it incorporates the invariance of the
Mahalanobis distance for these conditions. This section
describes related works on the Mahalanobis distance and
illumination robust stereo matching focusing on similarity
measures.

1) Mahalanobis Distance: The Mahalanobis distance has
been widely used as a distance measure in many computer
vision problems. It measures a relative distance by taking
into account the statistical characteristic of the distribution.
In clustering or classification problems, the methods for dis-
tance learning have popularly focused on the Mahalanobis
distance. Craw et al. [6] developed the Mahalanobis distance-
based classifier for facial recognition to deal with the variation
within samples. Habili et al. [7] used the Mahalanobis distance
to account for density variations in color distribution for a
skin-color segmentation. Weinberger and Saul [8] developed
a learning method of the Mahalanobis distance for k-nearest
neighbor (kNN) classification to capitalize on statistical reg-
ularity within samples. In a similar way, Xiang et al. [9]
advocated the Mahalanobis distance in data clustering and
segmentation, as it can adjust the geometrical distribution.

The Mahalanobis distance has been successfully used to
establish the correspondence between feature descriptors.
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TABLE I

COMPARISON OF ILLUMINATION INSENSITIVE SIMILARITY MEASURES

Tuytelaars and Gool [10] used it for wide baseline stereo
matching. Schaffalitzky and Zisserman [11] exploited affine
invariant properties of the Mahalanobis distance to measure
correspondence between descriptors. Schmid and Mohr [12]
measured the similarity between feature descriptors using the
Mahalanobis distance. In addition, Platel et al. [13] exploited
it to measure similarity in feature space. It is worth noting
that, unlike these methods that use the Mahalanobis distance
as the similarity distance between feature descriptors, the
MDCC leverages it to convert each matching vector into the
illumination-invariant space.

2) Illumination Robust Stereo Matching: The methods for
illumination-invariant stereo matching can be classified into
global and local approaches according to how the effect of illu-
mination variation is handled. Global approaches aim to reduce
the effect of illumination variation over the whole image. With
an assumption that the illumination variation can be modeled
by constant factors on each color channel, a gray world
transform divides each color channel by its average value
within local windows [14]. One alternative is the normalized
chromaticity (NC) transform that normalizes the responses of
each color channel by the overall summation [15]. However,
these methods cannot simultaneously reduce the dependency
on illumination-color and illumination-geometry, because the
normalization cannot eliminate illumination-dependent vari-
ables [16]. Finlayson et al. [17] used the histogram equal-
ization (HE) transform to provide an image representation
invariant to the illumination with an assumption that the
rank order is preserved under varying illumination conditions.
Ogale and Aloimonos [18] proposed a contrast invariant stereo
matching method by relying on multiple spatial frequency
channels. Although these global approaches are suitable for
global illumination change, illumination invariance is not
guaranteed for local illumination change.

Local approaches aim to reduce the effect of illumination
variation on each local window, and they can be classified
into parametric and nonparametric methods. Parametric
methods use raw color information and leverage image
transforms including the Laplacian of Gaussian (LoG)
transform [19], background subtraction by the bilateral
(BilSub) transform [20], and normalized correlation including
normalized cross-correlation (NCC) [4] and adaptive NCC
(ANCC) [5]. To remove a local offset, the LoG transform
constructs a residual image, which is the difference between
an original image and the second-order derivative image [19].

In a similar way, the BilSub transform builds a residual image
by subtracting the bilateral filtered image from an original
image to remove the local offset without blurring [20].
These transform-based methods fail under severe illumination
variation because they only compensate for a constant offset.
The NCC normalizes each support window to have a zero
mean and unit standard deviation and computes the degree of
cross-correlation (CC) between normalized windows, which
is robust to linear illumination variation [4]. However, this
method generates blurred results at object boundaries due to an
ignorance of the spatial structure. To overcome this fattening
effect, Heo et al. [5] proposed the ANCC, which measures
correlation similarity by penalizing different positions and
color values. The normalized correlation methods such
as NCC and ANCC provide relatively high performance
compared with image transform-based methods. However, they
compute correlation similarity in each color channel indepen-
dently, thus ignoring correlation similarity on cross-color
channels.

In contrast to parametric methods, nonparametric methods
use the local order of intensities or a statistical property instead
of a raw intensity value. The rank transform replaces the
intensity of a center pixel with the number of pixels within
a support window whose intensity is less than that of the
center pixel [21]. With the rank constraint, Wang et al. [22]
proposed the light transport constancy (LTC) method to pro-
vide the invariance to scene reflectance for non-Lambertian
surfaces. The Census transform produces a bit string for the
support window based on intensity comparison in such a
way that a bit 1 is allocated if the intensity of the center
pixel is larger than that of the neighbor pixel; otherwise, a
bit 0 is allocated [23]. Although these ordering-based meth-
ods are tolerant to local illumination variation, they produce
unsatisfactory performance on homogeneous or noisy regions,
where the local order of intensities is indistinct [23]. Mutual
information (MI) leverages the entropy of the joint probability
distribution function (PDF) to measure the similarity between
matching windows [24]. Kim et al. [25] used it as a pixelwise
data cost in the maximum a posteriori on markov random
field framework. However, the performance of the MI-based
method largely depends on the size of the matching window,
which regulates the distinctiveness of the statistical power. In
addition, the method is sensitive to local variations since it
is assumed that there exists a global transformation. Table I
shows the summary of similarity measures insensitive to
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Fig. 1. Degradation of conventional weight distribution under affine illumination variations. (a) Dolls left image. (b) Dolls right image. (c) Art left image.
(d) Art right image. (e)–(h) Corresponding weight distributions for indicated support windows in (a)–(d). The conventional weight distribution cannot be
preserved under affine illumination variation since it is based on the Euclidean distance.

illumination variations.

B. Contribution

The contributions of this paper are as follows. First, it
is shown that normalized correlation methods such as NCC
and ANCC provide limited performance for stereo pairs that
undergo affine illumination variation, and those limitations can
be alleviated by the proposed similarity measure according
to the invariance of the Mahalanobis distance. Second, the
proposed similarity measure is designed so that it simulta-
neously considers correlation similarity on each color and
cross-color channel, thus providing the illumination invariance
and improving the matching performance. Finally, instead of
a conventional weight distribution based on the Euclidean
distance, a weight distribution based on the Mahalanobis
distance is proposed to encode spatial information invariant
to illumination variation.

The remainder of this paper is organized as follows.
Section II introduces the affine illumination change model
and the limitations of conventional normalized correlation
methods. Section III describes the MDCC similarity measure
for illumination-invariant stereo matching. Experimental
results for stereo matching are given in Section IV. Finally,
conclusion and suggestions for future works are given in
Section V.

II. PROBLEM STATEMENT

A. Affine Transform for Illumination Change

Let us consider image pairs taken under different illumi-
nation conditions. Suppose the primary image I1 is taken
under a reference illumination condition, and it is mapped to
the secondary image I2 taken under an unknown illumination
condition, where I = [I R, I G , I B ]T. Let �1(p) and �2(p̂)

be support windows centered at pixel p ∈ N
2 in I1 and

corresponding pixel p̂ in I2, respectively. The vector form for
color values of pixels within each support window is defined
as �1(p) = ⊗q∈�1(p)I1(q)T and �2(p̂) = ⊗q̂∈�2(p̂)I2(q̂)T,
where ⊗ is the operator for the vector form.

Generally, the illumination variation of image pairs can be
modeled as an affine transformation between color distribu-
tions of image pairs. The affine model for illumination change
is widely used, as it deals with a wide range of imaging
conditions [26]. This affine model accounts for general lighting
environments such as illumination source changes, illumina-
tion direction changes, and ambient light [27]. Furthermore,
it involves different elements of the color deformation such
as noises and device artifacts [28]. The affine illumination
variation between I1(p) and I2(p̂) can be modeled as

I2(p̂) = ApI1(p) + bp (1)

where Ap is a 3 × 3 full matrix for linear transformation, and
bp is a translation vector.

B. Normalized Correlation Similarity Measure
in Stereo Matching

To estimate the correspondence between image pairs under
illumination variation, a number of methods have been pro-
posed, and normalized correlation methods such as NCC and
ANCC have shown satisfactory results. The NCC on ξ color
channel (ξ ∈ � = {R, G, B}) [4] is defined as

NCCξ (p, p̂) =
〈

�
ξ
1(p) − �̄

ξ
1(p)∣∣∣∣�ξ

1(p) − �̄
ξ
1(p)

∣∣∣∣ , �
ξ
2(p̂) − �̄

ξ
2(p̂)∣∣∣∣�ξ

2(p̂) − �̄
ξ
2(p̂)

∣∣∣∣
〉

(2)

where < ·, · > s the CC operator, and || · || is the L-2 norm.
�̄ξ (p) is the average value of �ξ(p). Although the NCC shows
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Fig. 2. Invariance of the Mahalanobis distance between color distributions of pixels within support windows and the mean color in color space under
affine illumination variations. (a) and (b) Art image pair under affine illumination variation. (c) and (d) Color distributions for indicated support windows in
(a) and (b). (e) and (f) Euclidean distance for (c) and (d). (g) and (h) Mahalanobis distance for (c) and (d). The Mahalanobis distance is preserved under
affine illumination variations when compared with the Euclidean distance.

Fig. 3. Comparison of the images captured with varying illumination conditions with the MDT visualization for each image. (a) Aloe images captured with
varying illumination conditions. (b) MDT visualization for each Aloe image in (a). The visualization represents the magnitude of the MDT vector.

robustness to linear variation, it produces a fattening effect.
To reduce this effect, the ANCC utilizes weight distributions
similar to the adaptive support-weight approach [29], defined
as

ω(q, p) = exp

(
−||q − p||2

γg

)
exp

(
−||I(q) − I(p)||2

γc

)
(3)

where ω(q, p) is the affinity between pixel q ∈ �(p) and
the center pixel p, computed according to the geometrical
proximity and color similarity. γg and γc are used to normalize
spatial and color distances, respectively. The ANCC on ξ color
channel [5] is then defined as

ANCCξ (p, p̂)

=
〈

W1(p)(�
ξ
1(p) − Rξ

1 (p))

||W1(p)(�
ξ
1(p) − Rξ

1 (p))|| ,
W2(p̂)(�

ξ
2(p̂) − Rξ

2 (p̂))

||W2(p̂)(�
ξ
2(p̂) − Rξ

2 (p̂))||

〉

(4)

where W(p) is a diagonal matrix, whose diagonal ele-
ments are the weight distribution ω(q, p), and Rξ (p) =
W(p)�ξ(p)/||W(p)||F , where || · ||F is the Frobenius norm.

In case of color images, these methods measure the corre-
lation similarity independently on each color channel as

NCC(p, p̂) =
∑
ξ∈�

NCCξ (p, p̂). (5)

Similarly

ANCC(p, p̂) =
∑
ξ∈�

ANCCξ (p, p̂). (6)
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Fig. 4. Invariance of proposed weight distributions for support windows under illumination variations as shown in Fig. 1. (a) and (b) Proposed weight
distribution for Dolls image pairs. (c) and (d) Proposed weight distribution for Art image pairs. Proposed weight distributions are preserved even under severe
illumination variations.

For color image pairs under illumination variations, the
limitations of normalized correlation methods are twofold.
These methods do not consider the correlation similarity on
cross-color channels. In stereo matching, color information
reduces the ambiguity between similar intensity pixels and
improves the distinction in local [30] and global methods [31].
However, under illumination variation, color information in
these methods cannot contribute to improve the performance
[3], [32]. The main reason is that the affine illumination
variation causes color channels to influence each other as
in (1), and thus, each color channel can be degraded by cross-
color channels. That is, to estimate similarity between color
image pairs under the affine variation, the similarity on cross-
color channels should also be considered.

The weight distribution in ANCC does not guarantee
accurate encoding of spatial information, thus degrading the
performance and producing outliers. In ANCC, correlation
similarities are aggregated with weight distributions on the
basis of the Euclidean distance in both support windows
as in (3). It is assumed that the pixel similar to a center
pixel has a similar disparity value to that of the center
pixel [5]. Thus, weight distributions of each support window
should be preserved to provide an edge-preserving property.
However, the affine illumination variation induces nonlinear
transformation between weight distributions of each support
window. Fig. 1 shows the degradation of conventional weight
distribution under illumination variation.

III. STEREO MATCHING WITH THE MDCC
SIMILARITY MEASURE

This section presents the MDCC similarity measure for
illumination-invariant stereo matching. It measures the sim-
ilarity using CC in the MDT space, achieving robustness to
illumination variation between stereo pairs.

A. Mahalanobis Distance Transform Space

Let us assume that pixels within local support windows
are degraded by identical affine illumination variation. Under
these variations, the statistical characteristics between support
windows �1(p) and �2(p̂) are closely related. Denote �1(p)
and �2(p̂) as the covariance matrices for �1(p) and �2(p̂),
respectively. It can be shown that these corresponding covari-
ance matrices are related as

�2(p̂) = Ap�1(p)AT
p . (7)

In other words, the covariance matrices �1(p) and �2(p̂) are
similar, and the matrix Ap is the similarity transformation [33].

Furthermore, the average color values computed on each
color channel are related by

�̄2(p̂) = Ap�̄1(p) + bp (8)

where �̄1(p) and �̄2(p̂) are average color values of �1(p) and
�2(p̂), respectively, where �̄(p) = [�̄R(p), �̄G(p), �̄B(p)]T.
Using the statistical relationships in (7) and (8), the
Mahalanobis distance between a color itself and the average
color is invariant to illumination variation, as in Proposition 1.

Proposition 1: The Mahalanobis distance between I(q) for
q ∈ �(p) and �̄(p) is preserved under affine illumination
variation.

Proof: The Mahalanobis distance dM(·, ·) between I1(q)
and �̄1(p) is defined as

dM(I1(q), �̄1(p))=(I1(q)−�̄1(p))T�−1
1 (p)(I1(q)−�̄1(p)).

(9)

Similarly

dM(I2(q̂), �̄2(p̂))=(I2(q̂)−�̄2(p̂))T�−1
2 (p̂)(I2(q̂)−�̄2(p̂)).

(10)

By substituting (1), (7), and (8) into (10)

dM(I2(q̂), �̄2(p̂)) = (ApI1(q) + bp − Ap�̄1(p)−bp)T

·(Ap�1(p)AT
p )−1(ApI1(q)

+ bp − Ap�̄1(p) − bp)

= (I1(q) − �̄1(p))T�−1
1 (p)(I1(q)−�̄1(p))

= dM(I1(q), �̄1(p)). (11)

This shows that the Mahalanobis distance for pixels within
corresponding support window dM(I2(q̂), �̄2(p̂)) is equivalent
to that of reference support window dM(I1(q), �̄1(p)).

As shown in Fig. 2, the Mahalanobis distance is invariant to
affine illumination variation between support windows, even
if the color distributions of pixels within each support window
are transformed. This implies that, for estimating the similarity
between support windows which undergo illumination varia-
tion, it is helpful to convert pixels within support windows
into its Mahalanobis distance to compensate for illumination
variation.
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Fig. 5. Disparity maps for (a) Aloe, (b) Art, (c) Moebius, (d) Dolls, (e) Laundry, and (f) Cloth4 image pairs taken under illumination combination one-third
with methods (from top to bottom) including HE/CC + WTA, BilSub/CC + WTA, MI + WTA, Census + WTA, NCC + WTA, ANCC + WTA, MDCC +
WTA, and ground truth.

With Proposition 1, the MDT space is defined as a collection
of the Mahalanobis distances between the color itself and the
average color. Thus, the MDT for pixel p is defined as

MDT1(p) = ⊗q∈�1(p)dM(I1(q), �̄1(p)). (12)

In a similar way, the MDT for the pixel p̂ is defined as

MDT2(p̂) = ⊗q̂∈�2(p̂)dM(I2(q̂), �̄2(p̂)). (13)

The MDT for the pixel p is equivalent to that for cor-
responding pixel p̂ although the affine variation transforms
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TABLE II

BAD PIXEL ERROR RATES AT UNOCCLUDED AREAS IN DISPARITY MAPS WITH VARYING THE COMBINATION OF ILLUMINATION INDEX.

BOLD RESULTS REPRESENT THE TWO LOWEST ERROR RATES AMONG SIMILARITY MEASURES

the color distributions between support windows. In other
words, the MDT provides illumination invariance, which is
not available when using original color information. Fig. 3
shows that the illumination variation is dramatically reduced
in the MDT space.

B. MDCC Similarity Measure

The MDCC similarity measure converts pixels within each
support window into the MDT space and computes correlation
similarity between MDT pairs.

To encode spatial information within support windows,
the MDCC similarity measure uses the weight distribution
around matching pixels. Because conventional weight distrib-
ution based on the Euclidean distance is degraded under the
affine variation, as shown in Fig. 1, it cannot encode spatial

information correctly and causes outliers. Thus, the MDCC
similarity measure employs the Mahalanobis distance instead
of the Euclidean distance. Similar to Proposition 1, the Maha-
lanobis distance between I(q) for q ∈ �(p) and I(p) within
a support window provides illumination invariance. Then, the
weight distribution based on the Mahalanobis distance υ(q, p)
is defined as

υ(q, p) = exp

(
−||q − p||2

γg

)
exp

(
−dM(I(q), I(p))

γc

)

= exp

(
−||q − p||2

γg

)

exp

(
− (I(q) − I(p))T · �−1(p) · (I(q) − I(p))

γc

)
.

(14)
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Fig. 6. Average bad pixel error rates at the unoccluded areas in disparity
maps with varying the combination of illumination index. The MDCC shows
the best performance with the lowest bad pixel error rates.

This weight distribution enables encoding of spatial infor-
mation even with severe illumination variation, which will be
described in Section III-B.

Given the MDT vector pairs, it is necessary to measure
the similarity between them. For estimating corresponding
pixels, proper similarity measures on the MDT space enable
illumination invariance. Because the MDT itself has the effects
of normalization within the support window, it is unnecessary
to apply conventional normalized correlation methods between
MDT pairs. In addition, simple difference measures between
MDT vector pairs provide low distinctiveness, such as the
sum of squared differences (SSD) and the sum of absolute
differences (SAD). Thus, after transforming pixels within
support windows into MDT vectors, the MDCC similarity
measure computes the CC between MDT pairs with weight
distributions based on the Mahalanobis distance in both sup-
port windows as shown in (15) at the bottom of this page,
where V(p) is a diagonal matrix, whose diagonal elements are
the weight distribution υ(q, p). The maximum of the MDCC
similarity measure represents the best similar candidate pixel
to the reference pixel.

1) Properties of the MDCC Similarity Measure: In this
section, the MDCC similarity measure is compared with
normalized correlation methods such as NCC and ANCC,
and it is verified that the MDCC similarity measure is
more robust to affine illumination variation than these
methods.

First, the MDCC similarity measure simultaneously con-
siders correlation on each color and cross-color channels,
thus providing illumination robustness and improving the
performance. By neglecting off-diagonal components of the
covariance matrix, the MDT for pixel p can be approximated
as

MDT1(p) ≈
∑
ξ∈�



ξ
1(p)∣∣∣∣�ξ

1(p) − �̄
ξ
1(p)

∣∣∣∣ (16)

where 
ξ(p) = ⊗q∈�(p)(I ξ (q) − �̄ξ (p))2. The denominator
term in (16) can be thought of as the normalization term, which
reduces an effect of illumination within support windows,
similar to normalized correlation methods. After approximat-
ing the MDT for pixel p̂ in a similar way, the following
relationship can be derived

MDCC(p, p̂)

≈
〈∑

ξ∈�

V1(p)

ξ
1(p)∣∣∣∣V1(p)||F · ∣∣∣∣�ξ

1(p) − �̄
ξ
1(p)

∣∣∣∣ ,
∑
γ∈�

V2(p̂)

γ
2 (p̂)∣∣∣∣V2(p̂)||F · ||�γ

2 (p̂) − �̄
γ
2 (p̂)

∣∣∣∣
〉

. (17)

This shows that the MDCC similarity measure needs only
single CC to compute the similarity between support windows;
however, NCC and ANCC require correlation computation
linearly with the number of color channels, as in (5) and
(6). That is, the computational time of the MDCC similarity
measure is reduced compared with these methods. Further-
more, the MDCC similarity measure explicitly has the effects
of computing correlation similarity for each color and cross-
color channel. For clarifying this property, (17) can be further
decomposed into two parts according to the combination of
color channel between support windows as shown in (18) at
the bottom of this page.

The left-side term and right-side term in (18) represent the
correlation on each color channel and the correlation between
cross-color channels, respectively. Furthermore, the left-side
term corresponds to conventional normalized correlation meth-
ods in terms of the correlation similarity on each color
channel. As mentioned in the preceding section, these meth-
ods provide limited performance under severe illumination
variation, because they do not consider the deformation from

MDCC(p, p̂) =
〈

V1(p)MDT1(p)

||V1(p)||F
,

V2(p̂)MDT2(p̂)

||V2(p̂)||F

〉
=

∑
q∈�p ,̂q∈�p̂

υ1(q, p)υ2(q̂, p̂)dM(I1(q), Ī1(p))dM(I2(q̂), Ī2(p̂))√ ∑
q∈�p

υ1(q, p)2 ∑
q̂∈�p̂

υ2(q̂, p̂)2
(15)

MDCC(p, p̂) ≈
∑
ξ∈�

〈
V1(p)


ξ
1(p)∣∣∣∣V1(p)||F · ∣∣∣∣�ξ

1(p) − �̄
ξ
1(p)

∣∣∣∣ , V2(p̂)

ξ
2(p̂)∣∣∣∣V2(p̂)||F · ∣∣∣∣�ξ

2(p̂) − �̄
ξ
2(p̂)

∣∣∣∣
〉

+
∑
ξ∈�,

γ∈�\ξ

〈
V1(p)


ξ
1(p)∣∣∣∣V1(p)

∣∣∣∣F · ∣∣∣∣�ξ
1(p) − �̄

ξ
1(p)

∣∣∣∣ , V2(p̂)

γ
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Fig. 7. Disparity maps for Art image pairs taken under illumination combination one-third with different optimization schemes such as (from top to bottom)
ICM, BP, GC, and TRW. (a) MI. (b) Census. (c) NCC. (d) ANCC. (e) MDCC.

cross-color channels. In contrast, the MDCC similarity mea-
sure simultaneously considers the correlation on each color
and cross-color channel. That is, the MDCC similarity measure
provides more improved robustness than NCC and ANCC, by
additionally considering the correlation similarity on cross-
color channels.

Second, the MDCC similarity measure encodes spatial
information invariant to the illumination variation between
support windows. It employs the Mahalanobis distance to
compute color difference for the weight distribution owing
to the invariance of this metric under the affine deformation.
Similar to Proposition 1, it can be easily derived as

dM(I1(q), I1(p)) = dM(I2(q̂), I2(p̂)). (19)

Then, the proposed weight distribution is preserved under
affine illumination variation such that

υ1(p, q) = exp

(
−||q − p||2

γg

)
exp

(
−dM(I1(q), I1(p))

γc

)

= exp

(
−||q̂ − p̂||2

γg

)
exp

(
−dM(I2(q̂), I2(p̂))

γc

)
= υ2(p̂, q̂). (20)

It shows that the proposed weight distribution enables
spatial information encoding even under illumination variation.
Fig. 4 shows the invariance of proposed weight distributions

between support windows taken under varying illumination
conditions as shown in Fig. 1.

IV. EXPERIMENTAL RESULTS

In this section, the stereo matching performance of the
MDCC and other global or local methods is compared
using standard Middlebury data sets including the Aloe, Art,
Moebius, Dolls, Laundry, and Cloth4 image pairs [34]. Each
data set consists of color image pairs taken under three
different illumination conditions indexed from 1 to 3 and three
different exposure conditions indexed from 0 to 2. To evaluate
robustness to illumination variation, stereo pairs were selected
according to the index of illumination, for example, illumina-
tion combination a/b was defined as an index of illumination
varying from a to b. In the experiments, the parameters of
the MDCC were fixed (15 × 15 window, γg = 392, and
γc = 62.7). The MDCC was compared with several state-
of-the-art methods: CC with histogram equalization transform
(HE/CC) [17], CC with BilSub transform (BilSub/CC) [18],
Census (7 × 7 window) [23], MI-based method (MI) (11 × 11
window, binsi ze = 20) [24] on the gray channel, and NCC
(9 × 9 window) [4], ANCC (31 × 31 window, γg = 392, and
σs = 28.8) [5] on RGB color channels. The parameters of
each method were set with reference to the original works.
HE/CC and BilSub/CC were also compared since the MDCC
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Fig. 8. Average bad pixel error rates at unoccluded areas in disparity maps with varying the combination of illumination index. (a) ICM. (b) BP. (c) GC.
(d) TRW.

consists of CC with the Mahalanobis distance transform
(MDT/CC).

To evaluate the effects of similarity measures only, a stereo
matching framework was constructed with cost computation
using similarity measures and simple winner-take-all (WTA)
optimization [1]. In addition, the performances of similarity
measures were also evaluated using varying optimization
schemes such as iterated conditional modes (ICMs) [35],
belief propagation (BP) [36], graph-cut (GC) [37], and tree-
reweighted max-product message passing (TRW) [38], instead
of WTA. To evaluate the robustness of spatial structure encod-
ing in similarity measures, the disparity maps were estimated
by varying window sizes and weight distributions. Further-
more, the performance of the MDCC was also evaluated under
exposure variation.

The evaluation criterion is the bad pixel error rate in
nonoccluded areas ε of the disparity map defined as

ε(%)=100 × 1

NInocc

∑
p∈Inocc

{
1, if |DE(p) − DG(p)| ≥ 1

0, otherwise
(21)

where Inocc is the set of all nonoccluded pixels, NInocc is the
number of pixels within Inocc, and DE(p) and DG(p) are the
estimated and ground truth disparity at pixel p, respectively.

A. Illumination Change

1) Comparison of Similarity Measures With Local (WTA)
Optimization: To evaluate the robustness for illumination vari-
ation, the disparity maps were estimated with different similar-
ity measures for stereo pairs taken under varying illumination
condition from 1 to 3 with fixed exposure condition. Fig. 5
shows the disparity maps of the MDCC and other similarity
measures for the illumination combination 1/3. Table II shows
the bad pixel error rates for all possible combinations of
illumination.

Because the HE transform is based on the global rank order,
its performance is severely degraded under local illumination
variation dispersing the global rank order. The BilSub trans-
form is also sensitive to severe illumination variation because
it only compensates for a constant offset. The performance
of the MI-based method is degraded under local variations,
since it is assumed that there are global variations. The Census
transform estimates relatively accurate disparity maps since it
uses both the intensity order and spatial structure. However,
it provides poor results on homogeneous regions with an
indistinct order of pixels, as shown in the results of Art images.
The normalized correlation methods such as NCC and ANCC
perform well when compared with other methods. The NCC
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Fig. 9. Disparity maps for Dolls image pairs taken under illumination combination one-third with varying window size (from top to bottom) 5 × 5, 7 × 7,
9 × 9, 15 × 15, and 31 × 31. (a) MI + WTA. (b) Census + WTA. (c) NCC + WTA. (d) ANCC + WTA. (e) MDCC + WTA without weight. (f) MDCC +
WTA with conventional weight. (g) MDCC + WTA with proposed weight.

Fig. 10. Average bad pixel error rates at unoccluded areas in disparity maps
while varying the window size. The MDCC shows the best performance with
the lowest bad pixel error rates.

estimates relatively accurate disparity maps under illumination
variation. However, its disparity maps contain large errors in
the boundary regions because it does not encode the spatial
structure. The ANCC improves matching performance using
weight distributions in both support windows compared with
the NCC. However, the discrimination power of the ANCC is
limited under severe illumination variation such as illumi-
nation combination 1/3 as it ignores correlation between
cross-color channels, similar to NCC. Furthermore, the ANCC

produces many outliers owing to the degradation of weights
under illumination variation. Note that the ANCC was com-
puted on the RGB color space, without a log-chromaticity
normalization for fair evaluation, and these results are con-
sistent with other evaluation results [3], [5]. The MDCC
outperforms other similarity measures in most illumination
combinations. Because the MDCC computes the correlation
similarity between the illumination-invariant MDT spaces with
weight distribution based on the Mahalanobis distance, it
estimates accurate disparity maps and reduces the outliers
under severe illumination variation. However, like all other
methods, the performance of the MDCC weakens on regions
in which the color distribution is unstable such as highly
textured regions in Laundry images. Fig. 6 shows average bad
pixel error rates over all stereo pairs with varying illumination
combinations. The MDCC shows the best performance with
the lowest error rates compared with other similarity measures.
It shows remarkably improved performance in severe illumi-
nation variation such as illumination combination 1/3 or 2/3.
Furthermore, the MDCC provides the highest performance for
stereo pairs taken under consistent illumination conditions.

2) Comparison of Similarity Measures With Global
Optimization: To evaluate the effects of similarity measures
with global optimization schemes, the similarity measures
were combined with ICM, BP, GC, and TRW. The para-
meters were fixed for all methods [5], [35]. Fig. 7 shows
the disparity maps estimated by several similarity measures
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Fig. 11. Disparity maps for (a) Aloe, (b) Art, (c) Moebius, (d) Dolls, (e) Laundry, and (f) Cloth4 image pairs taken under exposure combination 0/2 with
methods (from top to bottom) including HE/CC + WTA, BilSub/CC + WTA, MI + WTA, Census + WTA, NCC + WTA, ANCC + WTA, MDCC + WTA,
and ground truth.

including MI, Census, NCC, ANCC, and MDCC combined
with different optimization schemes for Art images taken
under illumination combination 1/3. Fig. 8 shows average
pixel error rates for overall image pairs while varying the
combination of illumination indexes, similarity measures, and

optimization schemes. Although the performances of dis-
parity estimation vary with the optimization scheme, the
MDCC shows competitive performance compared with state-
of-the-art similarity measures, similar to the results of WTA
optimization.
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TABLE III

BAD PIXEL ERROR RATES AT UNOCCLUDED AREAS IN DISPARITY MAPS WITH VARYING THE COMBINATION OF EXPOSURE INDEX.

BOLD RESULTS REPRESENT THE TWO LOWEST ERROR RATES AMONG SIMILARITY MEASURES

3) Comparison of Spatial Information Encoding: To eval-
uate the robustness of spatial structure encoding in similarity
measures, the disparity maps were estimated while varying
the window size in each similarity measure for Dolls image
pairs as shown in Fig. 9. Furthermore, to evaluate the effect
of proposed weight distribution, the disparity maps were
estimated by the MDCC while varying the weight distribution
including the uniform, conventional, and proposed weight.
Fig. 10 shows the average bad pixel error rates over all stereo
pairs while varying the window size.

The MI-based method and the NCC with large window size
generate degraded boundaries as the fattening effects because
they do not consider the spatial structure. Because the Census
transform and the ANCC encode the spatial information
within support windows, they provide improved performance

as window size increases. However, the Census transform pro-
duces many outliers owing to inconsistency of ordering within
a support window. Since the ANCC aggregates correlation
similarity with the weight distribution is based on the Euclid-
ean distance, the results are degraded owing to production of
many outliers under severe illumination variation. This weight
distribution cannot correctly encode spatial information and
produces outliers as shown in Fig. 9(f), because it is also
degraded under illumination variation. In contrast, the MDCC
computes correlation similarity with the weight distribution
based on the Mahalanobis distance, thus encoding spatial
information within support windows invariant to illumination
variation. This enables the estimation of more accurate
disparity maps than conventional weight distributions as
shown in Fig. 9(g). Note that, without the weight distribution,
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Fig. 12. Average bad pixel error rates at unoccluded areas in disparity maps
with varying the combination of exposure index. The MDCC shows the best
performance with the lowest bad pixel error rates.

the MDCC induces fattening effects similar to NCC, as shown
in Fig. 9(e), as it does not consider the spatial structure. Fur-
thermore, the MDCC shows relatively stable and competitive
matching performance that is largely invariant to window size.

B. Exposure Change

The MDCC provides competitive performance under expo-
sure changes because these variations can also be approxi-
mated using the affine model. For evaluating robustness to
exposure changes, the index of exposure was changed from
0 to 2 with fixed illumination. Fig. 11 shows an example for
the disparity maps estimated by the MDCC and other similar
measures for stereo pairs taken under exposure condition 0/2.
Table III shows average bad pixel error rates for all possible
exposure combinations.

The HE/CC and BilSub/CC are sensitive to severe exposure
changes since they cannot handle local variations of expo-
sure. Compared with the experiments involving illumination
changes, the MI-based method shows competitive performance
under global variation. However, it shows limited perfor-
mance due to the decrease in statistical power under exposure
changes. Although the Census transform estimated relatively
accurate disparity maps, errors still exist in homogenous
regions because of the ambiguity of the rank order. NCC
and ANCC show limited performance under severe exposure
variation such as exposure combination 0/2. However, the
MDCC demonstrates more stable performance with respect
to the exposure variation in most cases, as shown in Fig. 12.

C. Computational Complexity

The computational time of the MDCC was compared with
that of other similarity measures with WTA optimization for
the Aloe images of 427 × 370 size and 70 disparities, which
was calculated using an average of 20 runs. The window size
of similarity measures was fixed to 15×15 for fair evaluation.
The experiments ran on an Intel(R) Core(TM) i7-3770 CPU
at 3.40 GHz. Fig. 13 shows normalized computational times,
which are relative ratios of processing time with that of

Fig. 13. Computational time performances of different similarity measures.

simple CC. Compared with the NCC, the computational com-
plexity of the ANCC increases because of the computation of
the weight distribution. To measure the correlation similarity
between color image pairs, the complexity of NCC and ANCC
increases linearly with the number of color channels since they
independently compute the correlation on each color channel.
In contrast, the MDCC computes the similarity with CC
between the MDT vector pairs only. Thus, the computational
complexity of the MDCC decreases compared with that of
normalized correlation methods.

V. CONCLUSION

A robust similarity measure called MDCC has been pro-
posed for illumination-invariant stereo matching. The MDCC
uses the Mahalanobis distance instead of raw color infor-
mation. It converts pixels within each support window into
the MDT space and computes the similarity using the CC
between MDT vector pairs. The MDCC aggregates the cor-
relation similarity with a weight distribution on the basis
of the Mahalanobis distance, encoding spatial information
invariant to illumination changes. Furthermore, by computing
correlation similarity on each color channel and cross-color
channels simultaneously, the MDCC improves robustness and
matching performance. Experimental results have shown that
the MDCC outperforms state-of-the-art similarity measures
for color image pairs under different illumination conditions.
In addition, the MDCC provided excellent performance even
under exposure changes.

In further work, the MDCC will be applied to address
other correspondence problems taken under illumination
variations, such as optical flow, visual tracking, and local
feature matching.
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