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A sensor-based vision localization system is one of the most essential technologies in computer vision appli-

cations like an autonomous navigation, surveillance, and many others. Conventionally, sensor-based vision

localization systems have three inherent limitations, These include, sensitivity to illumination variations,

viewpoint variations, and high computational complexity. To overcome these problems, we propose a robust

image matching method to provide invariance to the illumination and viewpoint variations by focusing on

how to solve these limitations and incorporate this scheme into the vision-based localization system. Based

on the proposed image matching method, we design a robust localization system that provides satisfactory

localization performance with low computational complexity. Specifically, in order to solve the problem of

illumination and viewpoint, we extract a key point using a virtual view from a query image and the descriptor

based on the local average patch difference, similar to HC-LBP. Moreover, we propose a key frame selection

method and a simple tree scheme for fast image search. Experimental results show that the proposed local-

ization system is four times faster than existing systems, and exhibits better matching performance compared

to existing algorithms in challenging environments with difficult illumination and viewpoint conditions.

© 2015 Elsevier Ltd. All rights reserved.
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. Introduction

A localization system is a technology that estimates current loca-

ion in dorter to run an autonomous navigation systems in cars and

n unmanned monitoring robots both safely and consistently (Abdel-

afez et al., 2008; Choi, Park, Kim, & Choe, 2012; Royer, Lhuillier,

home, & Lavest, 2008; Wang, Zha, & Copolla, April 2006). Conven-

ionally, its performance depends mainly on estimating global posi-

ioning system(GPS) information. Various factors, however, such as

he cover, radio wave reflection, and interference in the open field

ith obstacles influence GPS estimation performance. To solve this

roblem with GPS and increase localization accuracy, localization

ystems with various kinds of vision and GPS sensors have been pop-

larly developed (Choi, Park, Song, & Kweon, 2011; Hays & Efros,

008; Schindler, Brown, & Szeliski, 2007; Zamir & Shah, 2010). A lo-

alization system based on vision sensors is generally composed of

wo parts, the environmental map generation stage and the location

stimation and correction stage (Choi et al., 2011).

First, the environmental map generation stage aims to describe

nd establish a target environment and proper data form, based on

he both GPS and visual information. The most important part of this
∗ Corresponding author. Tel: +82 2 2123 2879.

E-mail addresses: go3son@yonsei.com (J. Son), srkim89@yonsei.ac.kr (S. Kim),

hsohn@yonsei.ac.kr (K. Sohn).

ttp://dx.doi.org/10.1016/j.eswa.2015.07.035

957-4174/© 2015 Elsevier Ltd. All rights reserved.

Please cite this article as: J. Son et al., A multi-vision sensor-based fast

environments, Expert Systems With Applications (2015), http://dx.doi.org
tage is the compaction of the large amount of images associated

ith the location information. In other words, a large amount of com-

lex images and location information should be compactly packaged

o as to reduce any potential issues involving high computational

omplexity.

Second, the location estimation and correction stage aims to find

he target image that the most similar to the query image from the

nvironmental maps. That is, the image matching technology used

o estimate similarities between images generated from the environ-

ental map and the query image is the most important part. For

hese reasons, illumination and viewpoint variations are the most im-

ortant issues that must be overcome in order to provide satisfactory

ocalization performance in the localization system.

In this paper, we propose a robust localization system that can be

sed to solve viewpoint and illumination variation problems while

aintaining low computational complexity. The main contributions

f this paper can be summarized as follows:

• Robustness in outdoor environments: we have developed a robust

feature extraction method using virtual view images under chang-

ing viewpoint conditions and a feature description method that

can be used to improve HC-LBP under changing scale and illumi-

nation conditions.
• Low computational complexity: we propose a fast image retrieval

method for the localization system based on the key frame selec-

tion and the search range tree.
localization system with image matching for challenging outdoor
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We evaluated our proposed localization system against various

experimental datasets including simulation results for indoor and

outdoor datasets totaling 42,933 frames.

The paper is organized as follows. We introduce related works for

conventional image matching and localization systems in Section 2.

In Section 3, we propose a robust image matching algorithm that

is optimized to the proposed localization system. Finally, Section 4

shows the experimental results for challenging environments both

indoors and outdoors, followed by conclusions in Section 5.

2. Related works

2.1. Visual image correspondence

2.1.1. Feature extraction

In general, image matching algorithms are composed of three

steps: the feature extraction step, the feature description step, and

the matching step. Firstly, the feature extraction step aims to deter-

mine reliable and repeatable key-points on an image. In the literature,

these are, called interest points or feature points. Conventionally, Har-

ris corner detection (Harris & Stephens, 1988), which is based on the

response of a structural tensor, was the most popular key-point de-

tector. Taking their cue from Harris detector, many methods have

been proposed to detect affine invariant regions around points; these

methods, including Harris–Affine (Mikolajczyk & Schmid, 2004) and

Hessian–Affine detector (Mikolajczyk & Schmid, 2005). Maximally

Stable Extremal Regions (MSERs) (Matas, Chum, Urban, & Stereo,

2002) was also proposed for the determinations of affine invariant

key-points. The Anisotropic Binary Feature Transform (ABFT) frame-

work was also proposed based on structure tensor space (Kim, Yoo,

Ryu, Ham, & Sohn, 2013). However, these affine invariant detectors

cannot find reliable regions due to difficulties in localization. The

Scale Invariant Feature Transform (SIFT) has been one of the most

popular approaches due to its high robustness under various envi-

ronments (Lowe, 2004). It detects Different of Gaussian (DoG) points,

which approximate the Laplacian of Gaussian (LoG). In order to re-

duce computational complexity, Bay et al. proposed the Speeded-Up

Robust Features (SURF) algorithm (Bay, Ess, Tuytelaars, & Gool, 2008),

which approximates to SIFT and outperforms other existing meth-

ods. Although these conventional algorithms show satisfactory per-

formance, they still have high computational complexities. Recently,

Rosten et al. proposed the Features from Accelerated Segment Test

(FAST) feature detector (Rosten, Porter, & Drummond, 2010). Even

though it provides satisfactory results under low geometric deforma-

tions, they have limitations for severe geometric deformation such as

affine variations. To estimate affine invariant feature point, reliably

Guoshen et al. have proposed a fully affine invariant framework, i.e.,

Affine-SIFT (ASIFT) (Guoshen & Morel, 2009) based on the matching

in fully affine space. Although the SIFT has shown in reliable match-

ing for various affine variations, it also provides dramatically many

outliers and requires a high computational complexity. To overcome

the problems of ASIFT, Yu, Huang, Chen, and Tan (2012) proposed the

iterative solver to find homography matrix of two images, which the

reference image is then matched with the simulated image. In Chen,

Shao, Li, and Liu (2013), local stable regions are extracted from the

reference image and the query image, and transformed to circular ar-

eas according to the second-order moment. However, these methods

still require high computational complexities.

2.1.2. Feature description

The feature description step aims to describe each key-point on an

image as a distinctive vector that represents the local support win-

dow of each key-point. The SIFT (Lowe, 2004) and the SURF (Bay

et al., 2008) descriptor were based on the orientation of gradient

histogram. Calonder (2011) proposed the Binary Robust Independent
Please cite this article as: J. Son et al., A multi-vision sensor-based fast

environments, Expert Systems With Applications (2015), http://dx.doi.org
lementary Features (BRIEF) feature descriptor from intensity vari-

tion tests. The combination of FAST detection and BRIEF descrip-

ion has been popular since they provide satisfactory performance

nd low computational complexity (Heinly, Dunn, & Frahm, 2012). In

ddition, Rublee, Rabaud, Konolige, and Bradski (2011) proposed the

riented FAST and Rotated BRIEF (ORB), which addresses the rota-

ion variant problem of BRIEF. Leutenegger, Chli, and Siegwart (2011)

lso proposed the Binary Robust Invariant Scalable Keypoints (BRISK),

hich is a scalespace FAST detector in combination with bit-string

escriptors. Alahi, Ortiz, and Vandergheynst (2012) proposed the Fast

etina Keypoint (FREAK) inspired by the human visual system. How-

ver, they have limitations under various illumination conditions and

hanging viewpoint conditions. To provide the illumination robust-

ess, local binary pattern (LBP) (Guo, Zhang, & Zhang, 2010) was pro-

osed based on the intensity comparison. Furthermore, based on LBP,

enter-symmetric LBP (CS-LBP) and Haar-like Compact LBP (HC-LBP)

Kim, Choi, Joo, & Sohn, 2012) have been proposed. Multi Support Re-

ion Order Based Gradient Histogram (MROGH) was proposed based

n overlapping regions using multiple support regions combined by

ntensity order pooling (Fan, Wu, & Hu, 2012). Furthermore, Local

ntensity Order Pattern (LIOP) uses the intensity order pooling and

he relative order of neighbor pixels to define the histogram (Wang,

an, & Wu, 2011). Recently, Ballavia, Tegolo, and Valenti (2014) pro-

posed shifting gradient local orientation histogram (sGLOH) to im-

prove the discriminative power of histogram-based key point de-

scriptors. To estimate the correspondence between multi-modal im-

ages, the Local Self-Similarity (LSS) (Shechtman & Irani, 2007) and

LSS frequency (LSSF) (Kim, Ryu, Ham, Kim, & Sohn, 2014) descriptor

were proposed based on the local internal layout of self-similarities.

More recently, the Dense Adaptive Self-Correlation (DASC) descriptor

was proposed to estimate dense correspondence under multi-modal

and multi-spectral variations (Kim et al., 2015).

.2. Vision-based localization systems

Recently, vision-based localization systems based on image

atching, have been proposed (Choi et al., 2011; Hays & Efros, 2008;

nopp, Sivic, & Pajdla, 2010; Schindler et al., 2007; Zamir & Shah,

010). These popular methods, measure the correspondence between

reference dataset of images containing GPS information and a query

mage in order to estimate the location of the query image. Choi et al.

2011) proposed a localization system based on the feature matching

f SURF (Bay et al., 2008) and a KD-tree. Hays and Efros (2008) pro-

osed a method for extracting coarse geometric information from a

uery image. Zamir and Shah (2010) utilized online public images as

he reference database, using, a feature pruning method that incor-

orated geometric information, they were able to locate incorrectly

atched features. Schindler et al. (2007) designed a scale localization

ystem based on the bag of visual words model. It improves the con-

entional methods using a searching vocabulary tree. (Sattler, Leibe,

Kobbelt, 2010; 2012) designed a framework for identifying multi

imensional correspondences between the query and the reference

atabase containing a large number of user shared images. These

ethods, however, are also limited to certain illumination and view-

oint conditions.

. Illumination and viewpoint invariant localization system

.1. Problem statement and overview

Fig. 1 shows a block diagram of the overall proposed system. The

ultiple vision sensors are mounted top of unmanned vehicles. The

roposed system is composed of an environmental map generation

tage and a location estimation and correction stage. In the environ-

ental map generation stage, first, we use three images obtained

rom three cameras and GPS data to generate the environmental map.
localization system with image matching for challenging outdoor

/10.1016/j.eswa.2015.07.035
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Fig. 1. Block diagram of the proposed localization system.
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a

hese are then merged into a single image by image stitching. Then,

e extract the key feature point and feature point descriptor, These

re, typically not robust to illumination and view point changes. Fi-

ally, we build the hierarchical environmental map using the rela-

ionships between feature points. The environmental map consists

f key frames and non-key frames. As a representation of video se-

uence using proposed feature extraction and matching under time

omain, which will be described in Section 3.3. For location estima-

ion, the feature points of the query image are matched with the key

rames from the environmental map. It matches the key frames with

he non-key frames near them, and then finds the image that has

he most similar feature points in the environmental map. We esti-

ate the location using the correspondence between the matched

atabase image and the query image.

.2. Robust image matching

.2.1. Virtual view feature extraction

We can establish the acquisition model for the camera images,

ave slight viewpoint shifts, as illustrated by the camera model

Guoshen & Morel, 2009; Juan & Gwun, 2009) and digital image ac-

uisition. Let an image be f : I → R or R
3, where I = {i = (xi, yi)} ⊂

2 is a discrete image domain. Assume that the image f is transformed

y any affine transformation matrix A, which is representative of a

iewpoint change, and can be characterized as follows:

= HλR1(ψ)Tt R2(φ)

= λ

[
cos ψ − sin ψ

sin ψ cos ψ

][
t 0

0 1

][
cos φ − sin φ

sin φ cos φ

]
, (1)

here φ and t are the latitude angles of the camera’s optical axis

nd transition tilt, respectively. The ψ angle is the camera spin,

nd λ represents the zoom parameter. Since the tilt can be rep-

esented as t = 1/cos θ for θ ∈
[
−π

2 , π
2

]
, the affine transformation

odel is controlled by two variations including θ and φ (Alahi et al.,

012). A more detailed definition was reviewed in (Alahi et al., 2012).

his affine transformation matrix induces the coordinate of original

mage as

′ = A · I. (2)

Using this relationship, the affine transformed image f′, can be de-

ived from the original image,f ,using the affine matrix A, for which

f ′ : I ′ → R or R
3.

To build an affine image, we employ constant sampling along the

ongitude and latitude lines. Latitude θ is sampled using a geomet-

ic progression (e.g., 1, a, a2,…, an, a > 1) and longitude φ is sampled

n an arithmetic progression (e.g., 0, b/t,…, b/t, b � 72°). The inter-

al of sampling is established as a =
√

2, kb/t < 180°, tmax ≈ 4
√

2 in

ight of the exactness and efficiency of creating a viewpoint in third

imensional coordinates, as shown in Fig. 2(a) (Guoshen & Morel,
Please cite this article as: J. Son et al., A multi-vision sensor-based fast

environments, Expert Systems With Applications (2015), http://dx.doi.org
009). Note that we do not need to rotate all 180° since we use

ultiple-cameras with left and right viewing angles. Because of this,

he complexity is significantly reduced due to the amount of match-

ng by expanding from 30° to 60°, changing the sampling interval of

he latitude and longitude from 7-levels to 3-levels, and only using

he virtual viewpoint image of the one-sided image.

Fig. 2 (b) shows the virtual image optimized in the proposed lo-

alization system. To detect the feature point in the virtual viewpoint

mage, we employ the integral image scheme used in the SURF detec-

or (Bay et al., 2008). Although our detection looks similar to ASIFT,

t has an explicit advantage over ASIFT. Unlike ASIFT, we develop a

eature extraction method that merges the integral image and Hes-

ian matrix, and depending on the image resolution, we are able to

liminate the 3 × 3 sub-sampling methods. We will compared the

roposed method with ASIFT the experimental section.

.2.2. Scale invariant HC-LBP description

It self intensity order based local features rather than raw inten-

ity have been proposed based on the observation that the intensity

rders between pixels are invariant to monotonic changes in inten-

ity (Kim et al., 2012). However, these methods are limited in terms

f their scale change. To alleviate this problem, we propose a scale

nvariant Haar-like LBP descriptor, where the most appropriate scale

s integrated according to the size of the region that constitutes the

our descriptors. Specifically, for neighboring pixel q of center pixel p,

e calculate the average intensities of 4 regions - up, down, left, and

ight, as shown in Fig. 3, and then calculate the difference between

he mean of the up and down regions as dud(q) = mu(q) − md(q) and

lr(q) = ml(q) − mr(q), where mu(q), md(q), ml(q) and mr(q) are the

verage intensities of the up, down, left, and right regions, respec-

ively. dud(q) is the difference between the means of the up and down

egions, and dlr(q) is the difference between the means of the left

nd right regions. Comparing the two differences, we assign a pat-

ern code � based on the code criteria as in Algorithm 1. In this way,

e assign two codes �1(q) and �2(q) for a given pixel q. The number

f possible codes is 8 as shown in Fig. 3. Although the proposed mod-

fied binary pattern can describe a point using simple code, statistical

nformation around the feature point enables a powerful description

ith respect to illumination variation.

Finally, a robust grid pooling scheme is employed which sub-

ivides the region around the feature point into 16 sub-regions as

hown in Fig. 4; this is similar to a SIFT descriptor. A code histogram

s established in each sub-region. Each region then makes an 8-level

istogram., A 128-level histogram is made by connecting individual

ub-region histograms. Finally, we can obtain feature descriptor v(p)

or pixel p.

The proposed method can reduce the memory usage of the HC-

BP notion of how to scale up lighting. This is, in addition to proposing

scale that considers Scale Invariant Haar-like feature - Local Binary
localization system with image matching for challenging outdoor

/10.1016/j.eswa.2015.07.035
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Fig. 2. Extraction from a feature point with insignificant changes after a viewpoint change. (a) The virtual viewpoint of the sampled affine movie and (b) the key map for the

extraction of affine features.
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Pattern (SIH-LBP). The proposed descriptor generation method can

solve for both the various scales and changing illumination.

Algorithm 1. Scale-invariant HC-LBP descriptor

1: If both dud(q) and dlr(q) are smaller than a certain threshold value, the pixel

q is in a homogeneous region. We only assign a code if at least one difference

is larger than the threshold.

dmax(q) = max (|dud(q)|, |dlr(q)|) > Tnd (3)

2: If dud is larger than dlr , the parallel gradient is larger than the vertical

gradient at point p. Otherwise, the vertical gradient is dominant at point p.

According to the maximum between dud and dlr , we classify the two cases.

3: After determining the dominant orientation between parallel and vertical,

we assign the first code for point p according to the sign of a larger d.

�1(q) =

⎧⎪⎪⎨
⎪⎪⎩

U(q), dmax(q) = |dud(q)|&dup(q) > Tnd

D(q), dmax(q) = |dud(q)|&dup(q) < −Tnd

L(q), dmax(q) = |dlr(q)| &dlr(q) > Tnd

R(q), dmax(q) = |dlr(q)| &dlr(q) < −Tnd

(4)

4: The second code is assigned using a smaller difference. If we compare the

averages relating to a smaller difference, we assign a second code as follows:

�2(q) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

U(q),
∣∣dud(q)

∣∣ < |dlr(q)|&mu(q) > md(q)

D(q), |dud(q)| < |dlr(q)|&mu(q) < md(q)

L(q), |dud(q)| > |dlr(q)|&ml(q) > mr(q)

R(q), |dud(q)| > |dlr(q)|&ml(q) < mr(q)

(5)

3.3. Location estimation

3.3.1. Key frame selection

In order to reduce memory and processing time, we apply key

frame selection, which is used to process the third dimensional
Please cite this article as: J. Son et al., A multi-vision sensor-based fast

environments, Expert Systems With Applications (2015), http://dx.doi.org
odels using minimal structural calculations of the motion of the key

rame (Ahmed, Dailey, Landabaso, & Herrero, 2010).

We match correspondence points between the nearest key frame

nd the current query image using the proposed feature extraction

nd matching algorithms. We then select this image as the key frame

hen the number of corresponding points is below a threshold value

r when the number of correspondence points, which is the next

earest to the key frame, is few. We do this because the situation is

ecognized as the image that include many new feature points.

For example, we define the first image a key frame 1. Key frame 2

s at least Tn1 of common interest points with key frame 1. Key frame

is at least Tn1 of common interest points with key frame n-1 and

t least Tn2 of common interest points with key frame n-2. In other

ords, Tn1 means that the image a matches the feature number with

he previous key frame, Tn2 denotes a matching feature number with

he before previous frame.

Fig. 5 shows an example of key frame selection. 13 images are cho-

en as key frames among 1600 images. The interval for key frames is

et to approximately 100 images, which proves to be ten times faster

or full searches after implementing key frame and non-key frame

earch.

.3.2. Image search based on image matching

To detect which image is the most similar image to the query im-

ge in a set of environmental images, the feature points of the images

n the environmental map are matched to the feature points of the

uery image. The environmental image that is nearest to the query

mage is the one that has the largest number of positive matches in

he environmental map. Provided that vc
p is the descriptor of the p

eature point extracted through the current image c and ve
p′ is the de-

criptor of the p′ feature point extracted through the e image of the

nvironmental map.

c̄, p̄) = arg min
(c,p′)

(∥∥vc
p − ve

p′
∥∥2)

(6)

If the (c̄, p̄) which decide all of the feature points of the current

mage is c, the search of the Nearest Environmental Map (NEM) � is
localization system with image matching for challenging outdoor

/10.1016/j.eswa.2015.07.035
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Fig. 3. Four regions of a 5 × 5 patch and modified binary pattern.

Fig. 4. Compact descriptor generation.

Fig. 5. The application result of the key frame selection.
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Table 1

Time search feature points from DB.

Number of frames KD-tree (ms) Proposed search method (ms)

1000 4.199 2.42

2000 12.393 2.52

5000 32.1 3.12
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s follows:

� = max
c

(∑
p

a(c̄,p̄)

)
,

(c̄,p̄) =
{

1 (c̄, p̄) ∈ c
0 (c̄, p̄) /∈ c

(7)

It takes a great deal of time to implement a full search that, in-

ludes all of the environmental map images and query images, as

ell as feature point matching. We employ a vocabulary tree(KD-tree

ethod) used from a former localization method. A KD-tree is a use-

ul data structure for several applications, such as searches involv-

ng multidimensional search keys, range searches and nearest neigh-

or searches (Choi et al., 2011). The problem with a KD-tree scheme,

owever, is that it requires a high degree of computational complex-

ty since it must be configured for every input image. As Shown in

ig. 6(a), the data-saving method can show GPS data and image in-

ormation. This data structure is comprized of GPS data for latitude,

ongitude. Also, the flag and number of entire feature points, which

ndicate whether it is a key frame or not, are recorded in this data

tructure. Next, the bottom of the data structure consists of 128-

imensional descriptors and the station coordinates (x, y) of each
Please cite this article as: J. Son et al., A multi-vision sensor-based fast

environments, Expert Systems With Applications (2015), http://dx.doi.org
eature point. The virtual coordinates change with the changing view

oint into real coordinate values and are then saved.

To overcome these limitations, we design an effective image

earching method by the integration of the key frame selection and

earch range tree. We determine the the key frame with the high-

st matching value by matching the key frames of an environmental

ap to the query images. We fix the range from key frame-1/2 to

ey frame+1/2 in terms of the best key frame matching the most fea-

ure points. At this time, we individually change from the current key

rame to key frame+1, and from key frame-1 to key frame if the best

ey frame is the first or the last. We then build the binary tree match-

ng of each frame in a given search range. Finally, we detect the image

hat, has the most matching values in the last built tree, by constantly

atching the only line that has a relatively higher matching value af-

er we have designated the various matching values for each rank.

For example, assume that an experimental map has 1000 frames

ith key frames = (1,180,372,510,640,780,890,1000) and non key

rames = (all frames except key frames). If the best key frame number

s 510, we fix our range from 441 to 665. And then we generate the

ree using this search range.

Fig. 6(b) shows the framework of image retrieval and match-

ng. Table 1 shows the processing time comparison of the KD-tree

nd proposed search method using fusing key-frame selection and

search tree. A KD-tree is a space-partitioning data structure for

rganizing points in a k-dimensional space. In contrast to the pro-

osed system combining key-frame selection and the search range

ree, the processing time is reduced dramatically through the opti-

ized configuration. In addition, the results show that the proposed

ethod proves faster than the existing method, and has satisfactory

erformance.

.3.3. Location correction

Localization based on an image is performed by the estimation of

he relative location between two images. We assume the third di-

ensional coordinate of the other images as (x′, y′, z′) by calculating

q. (8) from the third dimensional coordinates (x, y, z) of a certain
localization system with image matching for challenging outdoor

/10.1016/j.eswa.2015.07.035
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Fig. 6. Sample of location estimation. (a) The structure of environmental map and (b) the process of image retrieval and matching.
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image when we already know the rotational transformation matrix R

and horizontal transformation vector T, which indicates the geomet-

rical relationship of the two images.[
x′
y′
z′

]
= R

[
x
y
z

]
+ T, (8)

where T and R can be gained by restoring the fundamental matrix

F from the corresponding points between the two images. F is a

3 × 3 matrix, explaining the geometrical attributes received by the

two cameras. Its attributes are as follows:

x1Fx2 = 0, (9)
Please cite this article as: J. Son et al., A multi-vision sensor-based fast
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here x1 and x2 are the correspondence between the two images. Be-

ause F is a 3 × 3 matrix, we can estimate linearly it by Direct Linear

ransform (DLT) when knowing the 8 correspondences. However, it

s very susceptible to correspondence matching errors. The algorithm

ffected by this flaw can’t be applied to real system. We must need the

nvarying the estimate method of fundamental matrix. Specifically,

e ought to exclude wrong outliers and use the method to identify

ell-informed correspondences only in order not to change its orig-

nal intent. Random Sample Consensus (RANSAC) is fit for this pro-

edure (Choi, Kim, & Yu, 2009). For example, select random 8 corre-

pondences for each attributes in order to make fundamental matrix,

nd then calculate the fundamental matrix by using them. To confirm
localization system with image matching for challenging outdoor
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Table 2

The difference between the conventional system and the proposed system.

Conventional system (Choi’s method) Proposed system

System Camera Stereo Multiple

Method Image matching Feature detector SURF Virtual view feature extraction (VVFE)

Feature descriptor Scale Invariant Haar-like feature local binary pattern(SIH-LBP)

Image search Vocabulary tree (KD-tree) Key frame selection, Search range tree

Pose estimation 3-point(P3P) algorithms 8-point algorithms with RANSAC

t

l

E

e

x

w

t

w

l

w

t

w

e

b

i

t

E

K

v

t

e

l

o

K

W

t

s

t

T

E

W

v

c

G

t

3

b

t

t

t

p

t

t

t

V

L

t

v

t

a

s

m

p

p

b

4

4

a

l

c

f

6

t

c

i

m

t

n

i

s

v

d

m

i

c

n

d

b

s

E

T

t

i

t

o

4

S

t

e

v

C

e

hat the made fundamental matrix can accord with Eq. (9), we should

ook for error ei by substituting individual correspondences into

q. (10).

i = x1iFx2i (i = 1, 2, . . . , n) (10)

1i or x2i is the correspondence of two image. We classify these as

rong correspondences when ei, the calculated error, is above a cer-

ain threshold value. After determining which correspondences are

rong, we record the number of wrong correspondences. We then se-

ect another 8 random correspondences and calculate the number of

rong correspondences, repeating the process outlined above. Con-

inues until only the most exact correspondences remain. In this way,

e calculate the fundamental matrix with minimal errors. Also, the

ssential matrix is extracted from the fundamental matrices to get

oth R and T from F. The essential matrix is the matrix without the

ntrinsic parameters from the fundamental matrix. The essential ma-

rix and fundamental matrix are related as follows:

= KT FK (11)

is the internal variable matrix of the cameras. We should know this

alue so that we can look for E, which is one of the fundamental ma-

rices. This resembles Eq. (11), and includes the focal distance of cam-

ras, the ratio of length and width, the form of the CCD and other re-

ated information. We can find the relation between the coordinates

f image and the real coordinate system using:

=
[
αx s cx

0 αy cy

0 0 1

]
(12)

e use the general camera calibration method by calibration pat-

erns. The relative location between the two cameras can be found by

ubstituting K and F into Eq. (12), and dividing this by the known rota-

ional transformation matrix R and horizontal transformation vector

as follows:

=
[

0 −tz ty

tz 0 −tx

−ty tx 0

]
R (13)

e calculate its relative location after finding an image on the en-

ironmental map that is most similar to the input image. Next, we

an use GPS to make an estimation of the input image by moving the

PS data of the environmental map into the calculated, rotated, and

ransformed data since the environmental map contains GPS data.

.4. Comparison with conventional system

Choi et al. (2011) presented a conventional localization system

ased on image matching which is a similar to the proposed sys-

em. Table 2 compares and analyzes the differences between the

wo systems. While the conventional system used a stereo camera,

he proposed system uses three multi-cameras, meaning that the

roposed system has better viewing angles. Moreover, the conven-

ional system uses SURF to create descriptors and extractions from

he feature points, potentially decreasing performance if illumina-

ion and/or viewpoints change. The proposed system uses the Virtual
Please cite this article as: J. Son et al., A multi-vision sensor-based fast

environments, Expert Systems With Applications (2015), http://dx.doi.org
iew Feature Extraction (VVFE) and Scale Invariant Haar-like feature-

ocal Binary Pattern (SIH-LBP) method, which is a feature point de-

ector and descriptor that is able to account for illumination and

iewpoint changes. Moreover, the conventional system, in terms of

he localization, uses a vocabulary tree to search images, establishing

larger database with faster performance. To create and even faster

earch method, the proposed system employs a key frame selective

ethod and binary tree method fixing search range. In addition, the

roposed method uses a virtual viewpoint that can extract feature

oints and carry out 8-point algorithms, allowing for similarities to

e determined between 8 images simultaneously.

. Experimental result

.1. Experimental environments

To evaluate the performance of the proposed algorithm, we set up

database including one set (743 frames) of internal images with il-

umination changes, one set (660 frames) of images with viewpoint

hanges, and six sets (6800 frames, 6713 frames, 6812 frames, 7332

rames, 7221 frames, and 7312 frames) of environmental images of a

-km drive in the outdoors, that include GPS data. During experimen-

ation, we used three cameras (Point Gray Research’s Flea) with a spe-

ific type of lens (Avenir’s 2.8-mm lens). The size of the experiment’s

mage and data set is 640 × 480. The viewpoint change image set is

ade by rotating objects leftward, center-ward, and upward, while

he illumination change image set is made by changing the bright-

ess three times and through five illuminations. The outside drive

mage set is composed of two illumination change data sets, one data

et according to the environmental map, one illumination, and three

iewpoint change data sets. Table 3 shows the information of the test

ata set in detail.

In order to evaluate the performance of the proposed image

atching, we divided true detection and false detection into match-

ng feature points manually. The rate of the matching feature is cal-

ulated as the true ratio number of matching points and the total

umber of matching points (Kim et al., 2012). In addition, the GPS

iscrepancy was calculated by measuring the difference in distance

etween the real GPS coordinates of the query image and the mea-

ured location coordinates of the query image (Alex, Denis, John, &

yal, 2008). The proposed system has three thresholds, Tnd, Tn1 and

n2. Tnd , which means that the neighboring distance of SIH-LBP is set

o 2. Based on key frame selection, the feature matching number Tn1

s set to 150 and we use Tn2 = Tn1 × 0.7. Also, by matching the dis-

ance of the proposed and conventional methods, we were able to

ptimize the values experimentally.

.2. Comparison of image matching performance

To make objective observations, SURF (Bay et al., 2008), Affine-

IFT (Guoshen & Morel, 2009), FAST (Rosten et al., 2010), and the ex-

raction from the feature point of the proposed virtual view feature

xtraction are evaluated for a data set having both illumination and

iewpoint changes. These are combined into SURF (Bay et al., 2008),

S-LBP (Kim et al., 2012), BRIEF (Calonder, 2011), sGLOH (Ballavia

t al., 2014), and the proposed generation method of an illumination
localization system with image matching for challenging outdoor
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Table 3

The information of experimental dataset.

Dataset Illumination change (time) Viewpoint change (degrees) Number of frames

Indoor Input image-1 3 lights/10–100 lux – 743

Input image-2 – 0–160 660

Outdoor Experimental map 12:00 0 6800

Input image-1 9:00 0 6713

Input image-2 18:00 0 6812

Input image-3 12:00 30–60 7332

Input image-4 12:00 90–115 7221

Input image-5 18:00 60–90 7312

Table 4

The matching result of both the conventional method and the proposed method in response to illumination changes.

Detector Descriptor Number of average matching features Rate of average matching feature (%) Processing time(s)

SURF SURF 21 43 0.26

SURF CS-LBP 13 77 0.22

Affine-SIFT SURF 321 45 3.3

Affine-SIFT CS-LBP 311 21 4.3

FAST BRIEF 98 86 0.05

Harris sGLOH 92 72 0.92

Propose method VVFE propose method SIH-LBP 176 92 0.18

Table 5

The matching result of both the conventional method and the proposed method in response to viewpoint changes.

Detector Descriptor Number of average matching features Rate of average matching feature (%) Processing time(sec)

SURF SURF 12 40 0.21

SURF CS-LBP 14 32 0.19

Affine-SIFT SURF 421 73 3.3

Affine-SIFT CS-LBP 387 77 3.5

FAST BRIEF 32 26 0.04

Harris sGLOH 41 72 0.9

Propose method VVFE Propose method SIH-LBP 226 90 0.19

Table 6

An estimate of the conventional localization system and the GPS, function, and performance time of the proposed system.

Conventional localization system Proposed system

Condition GPS discrepancy(m) Processing time (s) GPS discrepancy(m) Processing time (sec)

Illumination change (9:00) 32.1 2.3 4 0.51

Illumination change (18:00) 34.7 2.1 4.1 0.53

Viewpoint change (30–60°) 62.3 2.5 6.2 0.59

Viewpoint change (90–115°) 71.1 2.6 7.1 0.6

Illumination and viewpoint change (18:00, 60–90°) 103.2 2.4 11.2 0.56

4

l

a

e

i

p

t

d

i

t

i

w

3

c

o

n

t

t

robust descriptor. The parameter value of the algorithm used is the

most ideal value, and the estimate of the algorithm is implemented

by average matching rate and processing time.

Table 4 shows that the proposed method has the highest matching

rate in response to illumination changes, outperforming FAST+BRIEF

by 6% in terms of matching rate. However, we expect it to perform

better in terms of the calibration technology, which analyzes the dif-

ferences between two images, since the proposed method has 1.7

times more matching capabilities. Moreover, its processing time is

found to have the second place score compared to FAST +BRIEF. It is

slightly slower by 0.13 s.

Table 5 shows that the proposed method has the best matching

rate in response to viewpoint changes, performing 13% better than

the second place ASIFT + CS-LBP. Additionally, the proposed method

has a higher matching rate while its performance time is just slightly

slower by 0.15 s, than FAST + BRIEF, which is 64% more than FAST

+ BRIEF. In other words, the proposed method has the most reliable

matching rate in terms of illumination and viewpoint changes, and is

the best in terms of performance time, making it the most suitable

localization system.
Please cite this article as: J. Son et al., A multi-vision sensor-based fast
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.3. Comparison of image localization performance

Fig. 7 shows the comparison results for real GPS data with a

ocalized GPS value according to five conditions. Fig. 7(b and c)

re the images obtained with changing illumination; Fig. 7(d and

) are the images obtained after changing the viewpoint; Fig. 7(f)

s the image acquired after changing both illumination and view-

oint. Table 6 shows the GPS discrepancy and processing time of

he proposed system and localization system. The proposed system

ecreases the GPS discrepancy by six to ten times and the process-

ng time is decreased by a factor of four compared to the conven-

ional localization system. GPS discrepancy is seen as normal, which

s what makes it possible for a robot today to locate its position to

ithin 10 m even in a non-GPS receiving area if the road width is

m. Most images, including obvious buildings and characteristics,

an be resolved to within 3 m, while error tends to swell in the

pen fields that have no obvious characteristics. To reduce this weak-

ess of the localization system, the proposed system utilizes a vir-

ual viewpoint change technique, creating the descriptor based on

he light from the images, which improves the system’s ability to
localization system with image matching for challenging outdoor
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Fig. 7. The localization result. (a) GPS environmental map (12:00), (b) illumination change (9:00), (c) illumination change (18:00), (d) viewpoint change (30–60°), (e) viewpoint

change (90–115°), and (f) illumination and viewpoint change (18:00, 60–90°).

Fig. 8. Examples of limitation images. (a) Bush, (b) Repeat patterns.
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andle illumination and viewpoint changes. Its multi-camera im-

roves on the narrow viewing angle of single cameras, minimizing

he usage of necessary memory, decreasing processing time and in-

reasing performance. Demonstration simulations of the localization

ystem can be found at http://diml.yonsei.ac.kr/jison/localization.

.4. Limitations of the proposed system

The failed cases of the proposed method can be divided into

wo categories. The first case occurs when the image does not have

nough features as shown in Fig. 8. The second case occurs due

o repeating patterns. These limitations are generally due to local

atching methods. In order to combat these limitations, we need
Fig. 9. Average GPS with

Please cite this article as: J. Son et al., A multi-vision sensor-based fast

environments, Expert Systems With Applications (2015), http://dx.doi.org
o combine local and global matching. Also, we must analyze ex-

erimental results. If the matching number is not more than 20,

he localization system is deemed to have has poor performance,

therwise, the GPS discrepancy is reduced significantly and system

eliability is increased, as seen in Fig. 9.

. Conclusion

Conventional localization systems based on image matching can-

ot be successfully used in outdoor environments where illumination

nd viewpoint variation occur frequently. To help alleviate these con-

erns, we developed a robust localization system, which is resistant

o challenging environments and works with changing illumination

nd viewpoints.

The contribution of this paper is two-fold; first, we propose a ro-

ust feature point extraction method that works using virtual view-

oint changes and is robust to illumination changes. This method fea-

ures descriptors that improve performance. Second, localization sys-

ems based on multiple images have massive amounts of information

ut perform too slowly due to image sizes and complex algorithms.

o combat this, we have designed and optimized these complex algo-

ithms to reduce the processing time of the localization system.

Experimental results show that our proposed localization sys-

em improves localization performance in challenging outdoor en-

ironments. Moreover, the reduction in computational complexity

eans that it is four times faster than conventional systems. Also,
matching features.

localization system with image matching for challenging outdoor

/10.1016/j.eswa.2015.07.035

http://diml.yonsei.ac.kr/jison/localization
http://dx.doi.org/10.1016/j.eswa.2015.07.035


10 J. Son et al. / Expert Systems With Applications 000 (2015) 1–10

ARTICLE IN PRESS
JID: ESWA [m5G;August 8, 2015;16:13]

H

H

H

J

K

K

K

K

K

L

L

M

M

M

R

R

R

S

S

S

S

W

W

Y

Z

GPS discrepancies have been improved compared with conventional

systems.

Even though the proposed system was invariant against various

illumination and viewpoint changes, it is still difficult to handle sev-

eral extreme conditions such as repeated patterns and field environ-

ments. These extreme conditions are a common problem for local

feature extraction based localization systems. Limited local feature

matching is caused by having small features or by having many er-

ror features in an image. To overcome limitations of local feature

extraction-based localization systems, including those inherent to

the proposed system, we will study efficient combinations of using

the global matching method. Thus, a combined method using pro-

posed system will be developed in the near future.
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