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Abstract—We present a unified framework for dense corre-
spondence estimation, called Homography flow, to handle large
photometric and geometric deformations in an efficient manner.
Our algorithm is inspired by recent successes of the sparse to
dense framework. The main intuition is that dense flows located
in same plane can be represented as a single geometric transform.
Tailored to dense correspondence task, the Homography flow dif-
fers from previous methods in the flow domain clustering and the
trilateral interpolation. By estimating and propagating sparsely
estimated transforms, dense flow field is estimated with very low
computation time. The Homography flow highly improves dense
correspondence estimations, especially in flow discontinuous area.
Experimental results on challenging non-rigid image pairs and
Moseg dataset, having large geometric deformations and multi-
layered motions, show that our approach suppresses state-of-the-
art algorithms in both accuracy and computation time.

I. INTRODUCTION

Estimating dense correspondences between images has re-
mained as an active research topic in many computer vision
and computational photography society. It has been popularly
studied due to its usefulness in many applications, such as
stereo matching [1], optical flow [2], and image stitching
[3]. Although significant advances have been made towards
estimating dense stereo and optical flow fields for two images
adjacent in viewpoint or time, establishing dense correspon-
dences in a scene level still remains largely unsolved [4].
There exist two principal bottlenecks that make this task very
challenging; (1) photometric deformations derivded from dif-
ferent camera specifications, different illumination or exposure
conditions. (2) geometric deformations derived from viewpoint
changes, object pose changes, and non-rigid deformations [5].

To solve the inherent limitations for that task, many ap-
proaches have been proposed. First of all, existing approaches
have attempted to resolve the photometric deformations by
adopting robust local descriptors, e.g., scale invariant feature
transform (SIFT) [6], and achieved a satisfactory performance.
As a pioneering work, the SIFT flow [7] had shown satis-
factory results by employing SIFT descriptor [6]. However,
it cannot solve large geometric variation problems. Secondly,
to overcome this limitation, many approaches have tried to
extend a search space into not only displacement fields but
also scale and rotation fields. Inspired by the SIFT flow
[7], many geometric-invariant methods have been proposed,
such as scale-space SIFT flow [8] and deformable spatial
pyramid matching (DSP) [9]. However, they could consider
limited geometric variations. DAISY filter flow (DFF) [5]
reduces the search space by leveraging a randomized sam-
pling scheme from PatchMatch filter optimization [10], but
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Fig. 1: Comparison of warping results between geometrically
varying images in large occluded area. (a) source image, (b)
target image, and for (c) target patch, enlarged warping results
of (d) APAP [3] and (e) Homography flow. Unlike APAP
[3], the Homograpy flow provides visually plausible warping
results with accurately aligned flow discontinuity.

their correspondence fields are very noisy since it cannot
preserve spatial smoothness. Generalized deformable spatial
pyramid [4], an extension of the DSP [9], employed global
optimization to deal with possible search range effectively,
and thus, it naturally needs dramatically high computational
complexity. To summarize, the geometric variations make the
dense correspondence problems very challenging since they
induce dramatically large search space. Thus, conventional
methods inevitably have high complexity for that task.

Unlike conventional methods which exhaustively consider
all possible search spaces, our approach starts from an ob-
servation that sparse correspondences can be considered as
evidences to estimate a dense correspondence field. We found
that such a sparse-to-dense framework can be an inherent
solution to alleviate the computational burden. In fact, in stereo
matching and optical flow field, a number of methods have
been already proposed by employing sparse-to-dense frame-
work [2]. However, these conventional frameworks cannot be
extended to deal with large geometric variations. On the other
hands, in an image stitching field, as-projective-as-possible
(APAP) [3] method, extending moving least square (MLS) [11]
method with local adaptation, has been proposed, which can
be considered as an alternative solution for that task. However,
APAP [3] can not preserve flow discontinuities effectively
as shown in Fig. 1. Because it only depends on spatial
smoothness constraints, regions on the flow discontinuity are
also degraded, thus providing erroneous flows.



Fig. 2: Overall framework of the Homography flow.

In this paper, we propose a reliable sparse-to-dense frame-
work, called Homography flow, to improve accuracy. Our algo-
rithm formulates geometric variations of same planes as single
plane-wise homography. Specifically, we employ clustering
process on flow domain to divide the sparse matching set into
plane-wise subsets, and extract a plane-wise transform from
each subset. These transforms are then used as initial clues
for the dense correspondence estimation. Unlike conventional
method based on only spatial smoothness term, initial sparse
transforms are interpolated with a trilateral weight function
considering color, flow, and transform smoothness terms. Ex-
periments show that our algorithm outperforms the state-of-
the-art algorithms in terms of correspondence accuracy while
computational complexity is kept very low.

II. PROBLEM STATEMENT AND BACKGROUNDS

Given a pair of images, source image I and target image I ′,
our goal is to generate a spatially coherent and discontinuity-
preserving flow field fp ∈ R2 at pixel p with a very low
computational complexity. When two images are taken under
geometric deformations, to reliably estimate translation field
fp, additional search space for geometric variations should be
considered, such as scale variation sp and rotation variation rp.
Unlike conventional stereo or optical flow problems, consider-
ing only translation fields fp, its search space can be defined
in an infinite space, which prohibits its practical applications.

As described in above, a sparse-to-dense framework can
be considered to an inherent solution for that problem. As a
pioneering work, APAP [3] is also based on a propagation
of sparse correspondence. It estimates a location dependent
homography matrix Tp to minimize warping errors between
ground control pixel q and its corresponding pixel q′, as

xq′ = Tp � x̃q, (1)

where xq′ is the pixel coordinate and x̃q = [xq, 1]T . Tp ∈
R3×3 defines an affine transform at the pixel p, which has 8
dimension of freedom. Tp � x̃q is 1st and 2nd components
devided by 2rd components of Tp ∗ x̃q .

Since the affine transform Tp can cover geometric variations
such as scale and rotation, APAP [3] ideally can be used for
dense correspondences between geometrically varying images.

However, it has inherent limitations to provide accurate
displacement fields. First of all, when different flows meet
at object boundaries, the local warp often fails to estimate
an accurate alignment because this spatial smoothness term
assumes only spatially smoothing flow field as shown in
Fig. 1. It induces the necessity of additional smoothness that

preserve a flow discontinuity by selecting highly related flows.
Secondly, brute-force implementation of the method is very
slow. Therefore, a grid version of APAP [3] is more frequently
used to consider trade-off between accuracy and efficiency,
where it warps all pixels within the same cell using one Tp.
However, it loses some performance gain.

III. HOMOGRAPHY FLOW

A. Overview

Overall framework of the Homography flow is illustrated
in Fig. 2. Our approach hypothesizes that the overall flow
field consists of the optimal number of piecewise parametric
models. To this end, we initialize affine transformations Tp by
clustering sparse correspondence fields from sparse matching,
and surface-fitting scheme (Sec. III-B). Furthermore, we define
trilateral smoothness term for the sparse transform interpola-
tion to preserve flow discontinuity more effectively (Sec. III-
C). After that, dense correspondences are extracted as a simple
matrix computation.

B. Sparse Transformation Candidate Generation

In the geometrically challenging situations, conventional
algorithms need huge computational cost to directly estimate
the dense correspondence field. We reduce the complexity by
representing and estimating the entire flow field with piecewise
transform models. Our algorithm initializes transform candi-
dates from sparse correspondence Ωf = {f1, · · · , fNs

}. For
that initial matching, any sparse correspondence methods can
be used, and in experiments, we utilize SIFT [6] to estimate
scale and rotation invariant sparse correspondence.

Based on the observation that similar flows tend to be
located in same plane, we employ clustering algorithm on
the flow domain, and extract optimum transform candidates
by using flows of each cluster. Specially, K-means clustering
[13] is utilized by minimizing the enrgy function such that

argmin
ΦF

Nc∑
l=1

Ns∑
i=1

‖Fl − fi‖2, (2)

where fi is ith initial sparse flow. We set that the number of
subset clusters Nc is proportion to the number of the sparse
matching points Ns since few sparse matching points of each
cluster result in an unstable transform. We build optimal flow
subsets ΦF = {F1, · · · , FNc}, and finally cluster all sparse
pixels into fixed clusters.

Now, we can estimate the transform model for each cluster.
Specially, Tl can be formulated as a parametric model. For
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Fig. 3: Image alignment results under challenging photometric and geometric variations. Target and source images, and warping
results from SIFTflow [7], DFF [5], APAP [3], and the Homography flow.

considering trade-off between stability and representation of
geometric deformation, we choose “6-dof homography”, also
called by “affine transformation” [12]. RANSAC algorithm
[14] is utilized to formulate the transform Tl of each cluster l

Tl =

[
G(l) t(l)
01×2 1

]
, (3)

where G(l) is a 2× 2 geometric matrix, which describes scale,
rotation, and shear changes. t(l) is a 2× 1 translation vector,
and 01×2 is a 1× 2 zero matrix. This RANSAC process is
performed in homogeneous coordinate.

After these process steps, each Tl is allocated to the each
cluster l. We call these points as control points. Their trans-
forms T ∗p become initial clues for dense flow field.

C. Trilateral Interpolation
As described in above section, using only spatial smooth-

ness term for the transform propagation provides very noisy
output. In our approach, smoothness term is constructed to
ensure high weights on pixels located in the same plane. For
that task, energy function of the sparse transform interpolation
is formulated as

E(tk) =
∑
p

hp(tkp − t∗,kp )
2

+ λ
∑

q∈N4(p)

wp,q(tkp − tkq )
2

,
(4)

where hp is an index function, which is 1 for valid (constraint)
pixels, and 0 otherwise. tkp and t∗,kp are kth components
of dense transform Tp and initial sparse transform T ∗p . We
perform 7 iterations to optimize each component indepen-
dently because two components are fixed to zero at the affine
transformation. N4(p) is 4-neighbors of p.

Furthermore, to construct a weight wp,q , three features are
defined. All of these features concentrate on which factors can
distinguish different planes for preserving a flow discontinuity.
First feature is color value cp because pixel colors of same
plane have similar values. However, this feature may divide a
plane into more several parts according to their color patterns.
This problem can be alleviate by leveraging flow value fp,
which is a second feature of the trilateral weight. It is based on
the assumption that motion boundaries can be used to predict
object boundaries. Third feature is transform value tp, and
it assumes that geometric deformations on same plane are
similar. Since, however, there are no dense values of the second
and last features, we first interpolate the sparse features, fp
and T ∗p , to get dense flow feature f̂p and vectorized dense
transform feature t̂p by using the bilinear interpolation.

To summarize, the trilateral weight is extracted based on
these three features as

wp,q = exp

(
−||cp − cq||

2

σc2
− ||f̂p − f̂q||

2

σf 2
− ||t̂p − t̂q||

2

σt2

)
,

(5)
where the parameter σc, σf , and σt are set by user to adjust
the color similarity term, flow similarity term, and transform
similarity term respectively.

In this paper, we minimize the energy function E(tk) with
the trilateral weight by utilizing fast global image smoothing
(FGS) filtering [15]. By solving the above linear system with
dE(tk)/dtk, the sparse transforms T ∗ are adaptively propa-
gated to the same object plane. In a matrix form, minimizing
the E(tk) is represented such that

(H + λW)Tk = HT∗,k, (6)



Fig. 4: Visual results of warping the source label to target on
the Moseg dataset [16]. (from left to right) Target and source
labels, results of APAP [3] and the Homography flow.

where H is a diagonal matrix whose elements are 1 for valid
pixels and 0 otherwise. W means the matrix of the trilateral
weight. Tk and T∗,k are kth components of the final dense
transform in a vector form.

Finally, we can extract dense correspondence field fp from
dense transformation field Tp such that

fp = Tp � xp − xp. (7)

IV. EXPERIMENTAL RESULTS

In experiments, the proposed method is implemented with
Matlab using the VLFeat [13] and the FGS [15] provided by
author. We set σc = σf = σt = 0.01 and λ = 100 for the
trilateral interpolation. Nc is set to bNs/10c, where b·c is the
floor operator. The proposed method is evaluated with other
state-of-the-art methods, including SIFT flow [7], DFF [5],
and APAP [3].

A. Visual Comparison on Non-rigid Image Pairs

We first evaluated the Homography flow with images taken
under challenging non-rigid deformations. Visual comparisons
with other methods are shown in Fig. 3. As expected, SIFT
flow [7] is sensitive to scale and rotation variation by design,
and fail to estimate accurate flow. DFF [5] cannot deal with
asymmetric scale changes according to vertical and horizontal
axis, as shown in the second row of Fig. 3. APAP [3] achieved
quite competitive results, but showed limited performance in
the occlusion (the third row of Fig. 3) since it considers
only spatial smoothness. Compared to these methods, the
Homography flow gives coherent alignment results.

B. Results on the Moseg Dataset [16]

We also evaluated the Homography flow on the Moseg
dataset [16] including large displacements and multi-layered
motions as shown in Fig. 4. On these scenarios, APAP [3]
was influenced by the background flows, inducing a limited
performance. In Fig. 5, the transfer accuracy was measured
in image pairs of 10 frame difference. We followed the same
evaluation protocol in [4], which measures overlap percentages
between warping images and the ground truth using Dice
coefficient. The proposed algorithm represented 91.5%, while
other algorithms showed low accuracy as SIFT flow [7], DFF
[5], and APAP [3] as 73.7%, 70.4%, and 25.6%.
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car1 0.408751 0.901861 0.173 0.92
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car5 0.727808 0.634576 0.867 0.87

car9 0.860356 0.4852 0 0.88

car10 0.845899 0.3994 0 0.9
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Fig. 5: Quantitative results on the Moseg dataset [16]

V. CONCLUSIONS

We proposed the Homography flow for efficiently matching
image pairs taken under large photometric and geometric
deformation. The Homography flow starts from the sparse to
dense framework to estimate dense correspondence field in a
very efficient manner. By leveraging flow domain clustering
and trilateral interpolation, it extracted reliable flow field,
especially in flow discontinuous area. In experiments, the
Homography flow demonstrated its efficiency and robustness
in various photometric and geometric challenging situations,
and outperformed the state-of-the-art algorithms. In future
work, the Homography flow can benefit from more powerful
sparse matching algorithm.
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