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ABSTRACT
We present a spatiotemporal attention based multimodal deep neu-
ral networks for dimensional emotion recognition in multimodal
audio-visual video sequence. To learn the temporal attention that
discriminatively focuses on emotional sailient parts within speech
audios, we formulate the temporal attention network using deep
neural networks (DNNs). In addition, to learn the spatiotemporal
attention that selectively focuses on emotional sailient parts within
facial videos, the spatiotemporal encoder-decoder network is formu-
lated using Convolutional LSTM (ConvLSTM) modules, and learned
implicitly without any pixel-level annotations. By leveraging the
spatiotemporal attention, the 3D convolutional neural networks
(3D-CNNs) is also formulated to robustly recognize the dimensional
emotion in facial videos. Furthermore, to exploit multimodal infor-
mation, we fuse the audio and video features to emotion regression
model. The experimental results show that our method can achieve
the state-of-the-art results in dimensional emotion recognition with
the highest concordance correlation coefficient (CCC) on AV+EC
2017 dataset.
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Figure 1: The proposed audio-visual attention and recogni-
tion networks for dimensional emotion recognition.

1 INTRODUCTION
Recognizing emotion in videos can facilitate a variety of interac-
tive computer systems [13, 15, 27]. The ability to recognize facial
expression and/or emotion is also essential for affective computing
in artificial intelligence.

In order to represent emotion, dimensional emotion recognition
is widely used, where arousal and valence are two representative
domains described in a continuous domain. Specifically, arousal
represents how engaged or apathetic a subject appears while valence
represents how positive or negative a subject appears. Thosemodels
can represent subtle and complicated emotional behaviors.

To recognize the emotion using audio signals, a correlation be-
tween statistical measures of speech and the emotional state of the
speaker is shown in previous works [2, 4]. Many acoustic features
have been investigated for performing emotion classification, such
as pitch-related features, energy-related features, Mel-frequency
cepstrum coefficient, etc. In recent years, several audio features can
be learned using deep neural networks (DNNs). In [16], dynamic
time warping system is used to leverage the similarity to recognizie
the affective label of the utterance. Rozgic et al. [23] performed emo-
tion recognition by fusing acoustic features with lexical features
extracted from DNN based emotion recognition system.

To extract useful features from the video sequence for emotion
recognition, there exist many literatures. Over the past few years,
deep convolutional neural networks (CNNs) based methods have
shown substantially improved performances in emotion recogni-
tion tasks [5, 13–15]. However, most of those methods that only
use CNNs cannot encode temporal information for a facial video
sequence, and thus have shown limited performances for recog-
nizing emotion in an untrimmed facial video. Although recurrent
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Figure 2: The proposed acoustic attention and recognition
networks for dimensional emotion recognition.

neural networks (RNNs) [15] and long short-term memory (LSTM)
[10] have been used for understanding the facial video, they also
have shown limited performances due to the lack of a mechanism
for implicitly considering salient parts on the face.

Recently, several methods have tried to recognize emotion by us-
ing not only visual features but also audio features, and have shown
dramatically improved performance in emotion recognition [9, 25].
In this paper, we propose a novel deep architecture that implicitly
learns a temporal attention for audio signals and a spatiotemporal
attention for video signals, and estimates dimensional emotion (i.e.,
arousal and valence) in multimodal audio-visual video sequence.
This paper extends the previous work of visual attention based emo-
tion recognition system [20] by combining audio feature extraction
and attention network. Specifically, we design a temporal attention
network using DNNs to extract the most salient parts of audio sig-
nals. Also, we formulate a novel encoder-decoder network to learn
the spatiotemporal attention in a manner that it first extracts the
feature using 2D-CNNs and then estimates spatiotemporal atten-
tion using convolutional LSTM (ConvLSTM). Unlike conventional
LSTM [11] is used to sequence learning [24], ConvLSTM enables
us to maintain a spatial locality in the cell state while encoding
the temporal correlation, and thus our attention inference module
can estimate the attentive facial parts both spatially and temporally.
Based on this spatiotemporal attention, the emotion recognition
network is formulated using successive 3D-CNNs to deal with the
sequential data. To simultaneously use audio-visual information,
the audio and video features are used as inputs of fusion network
by concatenating the features. Our network provides the state-of-
the-art performance in the dimensional emotion recognition task
for the multimodal audio-visual database.

2 PROPOSED METHOD
The objective of our method is to recognize the dimensional emo-
tion by simultaneously using audio-visual attentions and features.
Let us define an audio sample composed of a sequence of T frames
as S1:T = {S1,S2, ...,ST } and a facial video sample composed of a
sequence of T frames as I1:T = {I1, I2, ..., IT }. The objective of di-
mensional emotion recognition is to regress a valence (or arousal)
score y ∈ [−1,1] for each multimodal input frame S1:T and I1:T .
To accomplish this, we first extract audio features with its cor-
responding temporal attention (Section 2.1). Moreover, for video

sequence, we propose the novel learnable module that implicitly
estimates spatiotemporal attention for the video. We extract the
features of each frame with spatial associations using 2D-CNNs
and then estimate spatiotemporal attention of the video using Con-
vLSTM (Section 2.2). The dimensional emotions of each frame are
estimated by leveraging 3D-CNNs to encode both appearance and
motion information simultaneously. The audio and video features
are then fused using a late fusion method to benefit the comple-
mentary advantages of each modal (Section 2.3). Fig. 2 and Fig. 3
show the framework of acoustic and visual multimodal emotion
recognition system.

2.1 Audio Temporal Attention Network
To extract acoustic features for emotion recognition, we introduce
the temporal attention inference network which discovers emo-
tional salient parts of the audio signals. By leveraging the baseline
audio features in AV+EC 2017 database, we design the temporal
inference network using DNNs, where the attention can be learned
in a weakly-supervised manner, only with the supervision of a
valence label. Fig. 2 shows the proposed audio temporal attention
network.

2.1.1 Audio Feature Extraction Network. To extract audio fea-
tures, AV+EC 2017 benchmark [22] adopts eGeMAPS as the base-
line audio features. Concretely, both segment-level acoustic feature
types are computed over segments of 4/6 seconds. Overall, the
acoustic baseline feature has 88 dimensional features. The extrac-
tion of the LLDs and the computation of the funcionals are done
using the openSMILE toolkit [6]. We use this feature for baseline
acoustic feature.

2.1.2 Temporal Attention Inference. Many sequence learning [3,
29] propose an attention network to focus discriminative parts. We
design the inference networkwithin a deep neural networks (DNNs)
without supervision for the temporal attention. The attention can be
learned implicitly during learning the emotion recognition module
which is consists of DNNs. Formally, let λSt be the corresponding
attention weight for St . We normalize the attention vector λSt by
using the temporal softmax as follows:

ASt =
exp(λSt )∑
t exp(λSt )

t ∈ 1, · · · ,T . (1)

Note that our method does not use ground-truth attention informa-
tion to learn the acoustic attention inference module.

2.2 Visual Spatiotemporal Attention Network
To extract visual cues for emotion recognition, we introduce the
attention inference network to predict spatiotemporal attention for
a facial video, which discovers emotional salient parts of the face.
Since there is no supervision for the spatiotemporal attention, we
design the attention inference network within a fully convolutional
network in a manner that the attention can be learned in a weakly-
supervised manner, only with the supervision of a valence label.
Fig. 3 shows the proposed visual spatiotemporal attention network.

2.2.1 Spatial Encoder Network. Previous attention-based ap-
proaches have learned attention by stack of LSTM (or RNNs) mod-
ules [24]. They only employ temporal information and does not
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Figure 3: The proposed visual attention and recognition networks for dimensional emotion recognition.

consider spatial correlations. To alleviate this limitation, we pro-
pose the feature encoder of 2D-CNNs. We extract convolutional
feature activation Xt for each frame It within a Siamese network
[19], where the weights and biases of each kernel are shared (i.e.,
replicated across all frames and updated together during training
phase), enabling us to reduce the number of parameters and prevent
an over-fitting problem. Specifically, the spatial encoder network
consists of successive 3 × 3 convolution layers and rectified lin-
ear unit (ReLU) layers, followed by max-pooling layers with stride
2× 2. To predict the attention with the same size of original images,
those convolutional activations are enlarged through the temporal
decoder network, which will be described in Sec. 2.2.2.

2.2.2 Temporal Decoder Network. From convolutional features
X I extracted in the spatial encoder network, the temporal decoder
network learns the spatiotemporal attention for all T frames. The
decoder network progressively enlarges the spatial resolution of
X I through a stack of deconvolution layers similar to [12, 19]. Un-
like other deconvolution layers as in [12, 19], we use ConvLSTM
modules that encode the temporal correlation across inter-frames
while preserving the spatial structure. Moreover, unlike LSTM that
operates over sequences of vectors and performs biased linear trans-
formations, ConvLSTMmodule has convolutional structures in both
input-to-state and state-to-state transitions as follows:

it = σ (Wxi ∗ Xt +Whi ∗ Ht−1 +Wci ∗ ct−1 + bi ),
ft = σ (Wxf ∗ Xt +Whf ∗ Ht−1 +Wcf ∗ ct−1 + bf ),
ct = ft ⊙ ct−1 + it ⊙ tanh(Wsc ∗ Xt +Whc ∗ Ht−1 + bc ),
ot = σ (Wxo ∗ Xt +Who ∗ Ht−1 +Wco ⊙ ct + bo ),
ht = ot ⊙ tanh(ct ),

(2)

where σ (·) and tanh(·) are the logistic sigmoid and hyperbolic
tangent (tanh) non-linearities, it , ft ,ot ,ct and ht are vectors to
represent values of the input gate, forget gate, output gate, cell
activation, and cell output at time t , respectively. ∗ denotes the
convolution operator and ⊙ denotes the Hadamard product.W∗
are the filter matrices connecting different gates, and b∗ are the
corresponding bias vectors. The recurrent connections operate only
over the temporal dimension, and use local convolutions to capture
spatial context. With the ConvLSTM module, our temporal decoder
network is composed of 3× 3 ConvLSTM and tanh [28]. To enlarge

Table 1: Analysis on the performance of each component
of the proposed network (in audio networks). ‘LSTM-RNN’
means acoustic features and ‘TA’ means acoustic temporal
attention.

LSTM-RNN TA RMSE CC CCC
✓ 0.122 0.496 0.454
✓ ✓ 0.109 0.621 0.551

Table 2: Analysis on the performance of each component of
the proposed network (in video networks). ‘STA’ means vi-
sual spatiotemporal attention.

2D-CNN 3D-CNN STA RMSE CC CCC
✓ 0.110 0.512 0.452

✓ 0.103 0.585 0.567
✓ ✓ 0.099 0.638 0.612

the spatial resolution ofXt , we build the sequence of deconvolution
with a factor of 2.

2.2.3 Spatiotemporal Attention Inference. Our spatiotemporal
attention is used as a soft attention in a manner that this attention
is multiplied to 3D convolutional feature activations. Toward this
end, we first normalize the attention map spatially by using the
spatial softmax defined as follows [24]:

AIt,i =
exp(WT

i Ht−1)∑
j exp(WT

j Ht−1)
i ∈ 1, · · · ,H ×W , (3)

where Ht−1 is the hidden state,Wi are the weights mapping to the
ith element of the location softmax, and j is defined for all locations.
Through this spatial softmax, final spatiotemporal attention AI can
be estimated.

2.3 Multimodal Emotion Recognition Network
By leveraging the acoustic temporal attention AS and visual spa-
tiotemporal attention AI , we recognize a dimensional emotion. We
first use a soft attention mechanism to make attention-boosted
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Table 3: The qualitative evaluation of the predicted valence on AV+EC 17 dataset [22]. The results with the lowest RMSE and
highest CC/CCC were highlighted.

Audio Video Method RMSE CC CCC
✓ Baseline[22] - - 0.351

✓ Baseline[22] - - 0.400
✓ CNN [15] 0.114 0.564 0.528
✓ CNN + RNN (≈ 4 sec.) [15] 0.104 0.616 0.588

✓ LSTM-RNN + TA (≈ 4 sec.) 0.109 0.621 0.551
✓ 3D-CNN + STA (≈ 4 sec.) 0.099 0.638 0.612

✓ ✓ LSTM-RNN + TA + 3D-CNN + STA 0.091 0.664 0.641

acoustic feature activations Y S as follows:

Y S = AS ⊙ S (4)

For the acoustic attention-boosted feature activation Y S , we build
additional 4 layers LSTM-RNN based neural network as speech
emotion recognition network, which is a powerful tool for modeling
sequential data [3, 10, 15]. In the last LSTM layer, we extract the
acoustic feature for fusion with visual feature.

Moreover, for the facial video signals, we employ the 3D-CNNs to
deal with temporal information, which simultaneously consider spa-
tial and temporal correlations across the input frames and directly
regress the emotion. To elegantly incorporate the spatiotemporal
attention to emotion recognition through 3D-CNNs, we first extract
convolutional feature activation X̂ I using 3D convolutional layers
for the video I as an input. Then, we multiply spatiotemporal atten-
tion AI to X̂ I to estimate the attention-boosted feature activations
as follows:

Y I = AI ⊙ X̂ I . (5)

For the attention-boosted feature activations Y I , we finally for-
mulate an additional 3D convolutional layers to recognize dimen-
sional emotion. This emotion prediction network has four 3D-
convolution layers, three 3D max-pooling layers, and two fully-
connected layers. The number of filters for four convolution layers
are 32, 64, 128 and 256, respectively. Before the last fully-connected
layer has audio feature as Z I , which and a linear regression layer
is used to estimate the output valence.

To fuse the audio and video features, we modify the convolu-
tional fusion scheme[7]. After the last fully connected layers of
each emotion recognition network, we concatenate the acoustic
features ZS ∈ RdS and visual features Z I ∈ RdI , where dS and
dI are dimensions of acoustic and visual features respectively, and
subsequently convolve the stacked data Z with a fully connected
layers where the output is a predicted emotion label for the last
frame as follows:

Z = cat(ZS ,Z I ), Z ∈ RdI+dS (6)

To learn the networks, we use the mean squared error as loss
function. It should be noted that our overall network can be learned
only with a ground-truth valence label as a supervision.

3 EXPERIMENTAL RESULTS
3.1 Implementation Details
We implemented our network using the TensorFlow library [1].
To reduce the effects of the network overfitting, we employed the
dropout scheme with the ratio of 0.5 between each fully-connected
layer. For training datasets, input audio features in the training set
were split into overlapped 16-frame feature map and input videos
were also split into overlapped 16-frame clips. Thus, the input of
model has a frame rate of 4 fps. For optimization, we chose Adam
solver[18] due to its faster convergence than standard stochastic
gradient descent with momentum. We trained our networks from
scratch using mini-batches of 16 clips, with initial learning rate
as λ = 1e − 4. The filter weights of each layer were initialized by
Xavier distribution, which was proposed by Glorot and Bengio [8],
due to its properly scaled uniform distribution for initialization.

For all investigated methods, we interpolated the valence scores
from adjacent frames related to dropped frames that the face de-
tector missed. In addition, following the AV+EC’s post-processing
procedure of predictions [21, 26], we applied the same chain of
post-processing on the obtained predictions; smoothing, centering
and scaling except time-shifting.

3.2 Experimental Settings
In order to evaluate the performance of the proposed method quan-
titatively, we computed three metrics: (i) Root Mean Square Error
(RMSE), (ii) Pearson Correlation Coefficient (CC), and (iii) Concor-
dance Correlation Coefficient (CCC) as used in [15]. The highest
CC and CCC value represent the best recognition performance.

In the following, we evaluated our proposed network through
comparisons to state-of-the-art CNNs-based approaches [15, 22].
The performance was measured on the AV+EC 2017 dataset [22],
which has been adopted for the AudioVisual Emotion recognition
Challenges (AV+EC) in 2017[22].

Likewise the other method [15], we use Dlib-ml [17] method as
face and landmark detector. We then mapped the detected landmark
points to pre-defined pixel locations in order to normalize the eye
and nose coordinates between adjacent frames.

3.3 Results
3.3.1 Component-wise Performance Analysis. We evaluated the

performance gain of each components in our method on the AV+EC
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Figure 4: Estimated valence graphs of 4th and 10th subjects in development sets in AV+EC 2017 dataset [22]: (a) estimated graph
on video feature. (b) estimated graph on audio feature. (c) estimated graph on both audio and video features.

2017 dataset [22]. In order to analyze the effect of the proposed net-
work architecture, we analyzed the performance of each component
(i.e., LSTM-RNN, attention DNN, encoder-decoder and 3D-CNNs)
in Table 1 and Table 2. Acoustic temporal attention improves per-
formance 0.125 and 0.097 for CC and CCC score compared than
the performance using only LSTM-RNN architecture. On the other
hands, by learning the spatiotemporal attention using the encoder-
decoder architecture, the estimation performance improves 0.053
and 0.045 for CC and CCC score compared than the performances
using only 3D-CNNs which shows the effectiveness of proposed
spatiotemporal attention based emotion recognition.

3.3.2 Comparison to Other Methods. In Table 3, we then com-
pared our method with the RNN-based approach [15] on AV+EC
2017 dataset [15, 22], which includes 34 training and 14 develop-
ment videos. The results have also shown that the proposed method
exhibits a better recognition performance compared to conventional
methods [15, 22].

We compared the valence scores predicted by proposed method
to ground-truth valence labels for two of the videos in the develop-
ment set in Fig. 4. The proposed models can detect the valence score
especially on the peak points by demonstrating the effectiveness of
the proposed attention architecture.

4 CONCLUSIONS
We proposed the dimensional emotion recognition framework that
leverages both acoustic temporal attention and visual spatiotempo-
ral attention of multimodal videos. Our method considered spatial
appearance and temporal motion for the facial video sequence si-
multaneously using 3D-CNNs, while attention DNNs are implicitly
focused on temporal acoustic saliency parts. Finally, we fused the
features extracted from audio-visual domains. An extensive exper-
imental analysis shows the benefits of our attention network for
dimensional emotion recognition, and demonstrates state-of-the-
art recognition performances of our method on the AV+EC 2017
dataset.
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