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Abstract—Leveraging on recent advances in deep convolutional
neural networks (CNNs), single image deraining has been stud-
ied as a learning task, achieving an outstanding performance
over traditional hand-designed approaches. Current CNNs based
deraining approaches adopt the supervised learning framework
that uses a massive training data generated with synthetic rain
streaks, having a limited generalization ability on real rainy
images. To address this problem, we propose a novel learning
framework for single image deraining that leverages time-lapse
sequences instead of the synthetic image pairs. The deraining
networks are trained using the time-lapse sequences in which
both camera and scenes are static except for time-varying rain
streaks. Specifically, we formulate a background consistency loss
such that the deraining networks consistently generate the same
derained images from the time-lapse sequences. We additionally
introduce two loss functions, the structure similarity loss that
encourages the derained image to be similar with an input rainy
image and the directional gradient loss using the assumption
that the estimated rain streaks are likely to be sparse and
have dominant directions. To consider various rain conditions,
we leverage a dynamic fusion module that effectively fuses
multi-scale features. We also build a novel large-scale time-lapse
dataset providing real world rainy images containing various rain
conditions. Experiments demonstrate that the proposed method
outperforms state-of-the-art techniques on synthetic and real
rainy images both qualitatively and quantitatively. On the high-
level vision tasks under severe rainy conditions, it has been shown
that the proposed method can be utilized as a pre-preprocessing
step for subsequent tasks.

Index Terms—Single image deraining, convolutional neural
networks (CNNs), time-lapse dataset, dynamic fusion module

I. INTRODUCTION

AN image captured in an outdoor environment frequently
suffers from visibility degradation due to various weather

conditions such as rain [1]–[7], haze [8], [9], or snow [2],
[10]. Especially, on rainy days, outdoor images are degraded
by rain streaks that cause undesired artifacts such as intensity
fluctuation and occlusion [1]–[7], [11]. In this context, a
single image deraining technique serves as an essential pre-
processing for various image processing tasks [12]–[14].

Approaches for single image deraining have been tradition-
ally formulated by modeling the physical characteristics of
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Fig. 1. Illustration of our learning framework for single image deraining:
using samples from time-lapse sequences taken at a static scene, we generate
corresponding rain streaks and consistent background images for multiple
input images from the time-lapse sequences.

a rain streak, but these hand-designed priors frequently fail
to model real rain streaks [6], [7], [15]–[19]. Recently, deep
convolutional neural networks (CNNs) based approaches [3]–
[5], [20]–[22], [24], [25] have improved the performance of
single image deraining substantially. They trained single image
deraining networks with a tremendous number of ground truth
paired training data in a supervised manner. As constructing
such massive training data with real images is extremely
difficult, they mostly rely on the synthetic data generated by
some rendering tools, such as Photoshop [28] and photo real-
istic rendering techniques [29]. However, they cannot reflect
real environments well, which incurs the domain adaptation
issue [5], [22].

To overcome this limitation, we propose a novel learning
framework that leverages time-lapse sequences, without using
any ground truth paired data. Our approach builds upon the
insight that the time-lapse sequences taken under a static
background with time-varying rain streaks allow to leverage
a background consistency constraint, as illustrated in Fig. 1.
Concretely, we present a background consistency loss to
estimate the consistent backgrounds of input images sampled
from time-lapse data. We further propose two additional losses
including a structure similarity loss and a directional gradient
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loss. The first loss encourages the estimated backgrounds to be
close to input images, and the latter one enforces the estimated
rain streaks to be sparse and have dominant orientations. Dur-
ing training, two images sampled from the time-lapse sequence
are fed into the deraining networks. To fully encode various
rain streaks, we extract features from multi-scale encoder
networks and fuse them using a dynamic fusion module that
learns an optimal fusion weight conditionally determined by
the input features.

We further construct a novel time-lapse dataset for derain-
ing. Unlike the existing synthetic datasets [3], [5], [20], [22],
we collect time-lapse sequences in the real world that contain
various rain conditions. To the best of our knowledge, there
is no study that exploits the time-lapse sequences of real
rainy scenes to learn the single image deraining. Extensive
experiments demonstrate that our approach provides state-of-
the-art performances on synthetic dataset [3], [5], [22] and
even generalizes well on real rainy images [24].

Our main contributions are highlighted as follows.
• We propose to exploit the time-lapse sequences to train

the deraining networks, without using any ground-truth
paired data.

• To train the networks using the time-lapse sequences, we
introduce novel loss functions for enforcing backgrounds
to be consistent, and estimated rain streaks to be sparse
and have dominant orientations.

• We introduce a large-scale rainy time-lapse dataset.
The remainder of this paper is organized as follows. Section

II describes the related works. The proposed method and our
time-lapse dataset are presented in Section III. Extensive per-
formance validation is then provided in Section IV, including
ablation study and comparison to the state-of-the-arts. Section
V concludes this paper.

II. RELATED WORK

A. Single Image Deraining

Classical approaches for single image deraining have used
a prior knowledge for modeling a background image or a
rain streaks using, e.g., Gaussian mixture model (GMM) [18],
[19], sparse coding [6], [16], and low-rank constraint [38],
[39]. Such hand-crafted methods have shown several limita-
tions such as over-smoothed image details [39] and imperfect
separation of rain streaks [16], [35], and frequently failed to
model real rainy characteristics.

Recently, deep convolutional neural networks (CNNs) have
achieved great success in single image deraining. Fu et al. [3]
first proposed to solve the deraining task through CNNs. They
decomposed rain images into low- and high-frequency parts,
and then trained only the high-frequency parts using shallow
networks. Yang et al. [5] introduced a deep recurrent network
to jointly detect and remove rain streaks (JORDER) by design-
ing a multi-task learning architecture using background, rain
streak, and binary map indicating a spatial position of rain
streaks. Zhang et al. [20] adopted the generative adversarial
network (GAN) with the perceptual loss to achieve better
visual quality of a derained image. Li et al. [19] particularly
concerned with various rain conditions including sizes and

directions of rain streaks. They proposed a multi-stage CNN
that consists of several parallel sub-networks to aware different
scales of rain streaks. Zhang et al. [22] proposed a density-
aware single image deraining. They designed a multi-stream
dense network to characterize a non-uniform rain density.
Li et al. [40] proposed a recurrent squeeze-and-excitation
(SE) based context aggregation network (CAN). The SE
block assigned different alpha-values for various rain streaks
according to the intensity and transparency, and CAN acquired
large receptive field. Li et al. [21] proposed a non-locally
enhanced encoder-decoder network to efficiently learn increas-
ingly abstract feature representation for rain streaks. Ren et
al. [41] proposed a simple and progressive recurrent deraining
network (PReNet) by repeating a shallow ResNet [42]. Wang
et al. [24] proposed a spatial attentive network (SPANet) to
remove rain streaks in a local-to-global manner. Wei et al. [25]
proposed a semi-supervised learning approach for single image
deraining. Yang et al. [43] proposed an extended version of
JORDER [5] by exploiting a RNN and a contextualized dilated
network for better deraining performance. Yang et al. [44]
proposed a scale-free network investigating on the scale variety
of rain streaks by unrolling a wavelet transform using a
recurrent neural network. Fu et al. [45] proposed a light-
weighted pyramid of network (PyramidDerain) by introducing
the mature Gaussian-Laplacian image pyramid decomposition
method. However, all these approaches adopt a supervised
learning framework using large quantities of paired synthetic
training data, which limits their generality and practical use
on real world rain images.

B. Video Deraining

Multiple image deraining has also been widely explored.
Garg et al. [29], [46]–[48] first attempted for rain removal
from multiple images. They proposed an appearance model to
describe rain streaks, and exploited it to detect rain pixels
in videos. Zhang et al. [49] focused on investigating the
brightness property of rain streaks in videos. Barnum et
al. [50] proposed a spatio-temporal frequency based method
for globally detecting rain streaks using a physical and statis-
tical model. Kim et al. [2] proposed to remove rain streaks
using temporal correlation with low-rank matrix completion.
They subtracted temporally warped frames from the current
frame to obtain an initial rain map, and decomposed it into
two types of basis vectors using a support vector machine
(SVM). Recently, deep neural networks based methods have
also been investigated. Chen et al. [11] proposed CNNs based
framework for video deraining using superpixel segmentation.
They aligned the scene contents at the superpixel-level, which
improves robustness to rain occlusion and fast camera motion.
By exploring the temporal redundancy in multiple images,
Liu et al. [51] proposed a hybrid rain model to cover both
rain streaks and occlusions. These methods make full use
of the rich information in multiple images and the temporal
redundancy in adjacent frames. While all the aforementioned
methods require multiple images as inputs during both training
and testing, our method only requires the time-lapse sequences
which have spatially invariant background to train networks,
and a single image at the testing phase.



IEEE TRANSACTIONS ON IMAGE PROCESSING 3

Deraining
Network

Deraining
Network

Weights Sharing

⋯

Directional 
Gradient Net.

C
lippingDirectional 

Gradient Net.

C
lipping

ࡵ

ࡵ ࡿ

ࡿ 



Time-lapse Sequence

Input Rain Streaks

Deraining
Network

C
lipping

ࡵ ࡿ 

(Fig. 4)

(Fig. 5) Background

Single Image

Tr
ai

ni
ng

Ti
m

e
Te

st
 T

im
e

Fig. 2. The overview of the proposed learning framework. The proposed networks consist of two components: deraining networks and directional gradient
networks. The deraining networks are trained to predict rain streaks and background images. The directional gradient networks are trained to determine a few
dominant orientation of rain streaks. At inference time, only a single image is required.

C. Deraining Datasets

Existing rain datasets generated synthetically by commercial
software such as Adobe After Effects [3], [5], [20], [22] have
a limited realism. They cannot effectively reflect various real
rain conditions such as rain shape, direction, and intensity. To
alleviate this problem, Wang et al. [24] constructed a large-
scale dataset of rain and clean image pairs that consists of
natural rain scenes by leveraging temporal priors and human
supervision. Our dataset is related to [24], but there are several
key differences that put a significant gap between the two
approaches. While [24] explicitly generated training data, i.e.,
paired training data using percentile filtering and attention map
through explicit supervision, our method builds the time-lapse
sequences from natural rain scenes without clean images.

D. Using Multiple Images

To overcome the lack of training data in various computer
vision and image processing tasks, numerous approaches [32],
[33], [52]–[56] leveraged large amounts of multiple images or
image sequences. For instance, Godard et al. [53] proposed
a self-supervised learning approach for monocular depth es-
timation using stereo image pairs. Wei et al. [33] proposed
a CNN-based intrinsic image decomposition using time-lapse
datasets, where a deep network is trained with only multiple
images containing same albedo but different shading. Vondrick
et al. [55] proposed a video colorization for visual tracking
by using large amounts of unlabeled video. Nam et al. [32]
proposed a multi frame joint conditional generation framework
for synthesizing a time-lapse video and photo-realistic illumi-
nation changes from a single outdoor image. A large-amounts
of multiple images or image sequences typically contain a rich
information between the coherent frames. Inspired by these
approaches, we attempt to address the lack of real training data
in the single image deraining task by leveraging the time-lapse
sequences.

III. PROPOSED METHOD

A. Motivation and Overview

Let us denote an image degraded by rainy artifacts as I . It
can be generally modeled as a summation of a rain streak S
and a background B [6], [7], [15]–[19] such that

I = S +B. (1)

The objective of single image deraining is to decompose I
into the rain streak S and the background B [6], [18], [24],
[40].

To this end, most CNN-based methods [3], [5], [20], [22],
[24], [41], [57], [61] learn a mapping function between the
rainy image I and the background B (or the rain streak S)
with a large-scale training data consisting of rainy images
and ground truth background (or rain streak images) in a
supervised manner. Obtaining such data in real environments
is, however, practically impossible, and thus they usually
leverage the synthetic data generated by Photoshop [28] or
photo realistic rendering technique [29]. They have shown
excellent results over existing handcrafted approaches, but they
suffer from the domain adaptation issue [5], [22] when applied
to real rainy images.

To solve this limitation, we present a novel learning frame-
work for single image deraining that leverages the time-lapse
data. We present a background consistency loss that enables
our deraining networks to consistently generate the same de-
rained images from the time-lapse sequences, as shown in Fig.
2. We train the deraining networks using a set of time-lapse
sequences T = {Tc}c=1,...,C , where Tc = {Ic,1, ..., Ic,N}. N
is the number of frames and c denotes the index of scenes,
and C is the total number of scene.

We further present additional loss functions such as a
structure similarity loss to make the input and output images
have the similar structural information, and a directional
gradient loss to make the estimated rain streaks have a few
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Fig. 3. Comparison of our loss functions: (a) input real rainy image, results of our method trained with (b) Lb only, (c) Lb and Ls, (d) Lb, Ls, and Lr ,
and (e) Lb, Lr , Ls, and Lv . By jointly using all the proposed loss functions, our method can provide highly improved performance.

dominant gradients. The reconstruction loss is used following
the definition of the rain model.

In the deraining networks, we first extract the multi-scale
features at different scales, and then fuse them through a
learned fusion weight, where the optimal fusion weight is
dynamically determined conditioned on input features. In the
directional gradient networks, dominant rain directions are
trained. The clipping layer prevents background images to be
negative. To train the networks with rainy images only, we
construct a large-scale time-lapse dataset, where each scene
contains the same backgrounds but different rain streaks. Note
that during an inference, the networks only require a single
image as input. Unlike the video deraining methods [2], [11],
[48]–[51] making full use of the information among frames
spatially and temporally, we exploit the time-lapse sequences
including the spatial invariance for single image deraining.
Moreover, while our method only uses single image at testing
thanks to the time-lapse sequences and our network, video
deraining methods require multiple images as inputs.

B. Loss Functions

1) Background Consistency Loss: In the time-lapse se-
quences Tc taken at a static scene, background images should
be invariant to time-varying rain streak changes. To generate
consistent background images across the time-lapse sequences,
we formulate the background consistency loss that uses an L1

penalty among the estimated background images such that

Lb =
∑
c

∑
{m,n}∈N

∑
i

‖Bc,mi −Bc,ni ‖1, (2)

where Bc,m is a background that is decomposed from Ic,m,
and m and n represent indexes of different input images from
the time-lapse sequences. Here, Bc,mi and Bc,ni are the pixel
elements from the image Bc,m and Bc,n, respectively. How-
ever, since minimizing this loss function is under-constrained,
we present additional loss functions to further constrain the
output.

2) Structure Similarity Loss: We argue that most of the
color or texture in estimated backgrounds should be well ap-
proximated by input images. To realize this, inspired by [66],
[67], we present the structural similarity loss that encourages
estimated backgrounds to be close to the input images. This

loss helps to initialize the structure of the overall background
information. We minimize an L1 penalty of estimated back-
grounds and input images such that

Ls =
∑
c

∑
{m,n}∈N

∑
i

γ‖Ic,mi −Bc,ni ‖1, (3)

where γ is reduced linearly from 0.1 to 0.0001 during the first
30% of the training and then fixed. This loss function enables
the networks to produce good initial results at the early training
stages. Fig. 3(c) shows the validation of this loss. Note that
an input image and an output background image should be
selected in different samples (i.e., m 6= n). When training the
networks with the pair of the same input image (i.e., m =
n), the networks are unable to reduce rain streaks effectively.
Different input images prevent this undesirable effect during
training.

3) Directional Gradient Loss: To enforce the estimated
rain streaks to have a few dominant gradient directions, we
present a novel loss function that clusters the gradients of
rain streaks into majority cluster centroids. We first extract
the gradient orientation of the estimated rain streaks such
that θ = tan−1(∇yS/∇xS), where ∇x and ∇y indicate the
gradient of x- and y-directions, respectively. To estimate the
directional gradient centers {ck}, inspired by [68]–[70], we
minimize the following objective function:

V (k) =
∑
i

αk(θi) ‖θi − ck‖1 , (4)

where θi is the gradient orientation at pixel i and ck is k-th
cluster center. αk(θi) denotes the membership of the gradient
orientation θi to k-th cluster, defined as follows:

αk(θi) =
eW

T
k θi+bk∑

k′ e
WT

k′θi+bk′
, (5)

where Wk and bk are sets of trainable parameters for k-th
cluster. To learn the cluster centroids and make the gradient
directions of all pixels be concentrated on them, we minimize
V (k) with an L1 penalty such that

Lv =
∑
k

‖V (k)‖1. (6)

Fig. 3 shows the effectiveness of directional gradient loss in
capturing rain streaks.
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Fig. 4. The architecture of the deraining networks consisting of three
components. The multi-scale encoder first captures features at different scales.
The filter-generator aggregates multi-scale features adaptively. The decoder
resolves spatial resolution details using skip connections.

4) Reconstruction Loss: Following the definition of the
rain model [6], [7], [15]–[19], the input image I should be
reconstructed with B and S. We present a reconstruction loss
as follows:

Lr =
∑
c

∑
m∈N

∑
i

‖Imi − (Bmi + Smi )‖1. (7)

This strongly prevents any deviation from Eq. 1. Empirically,
this loss reaches close to 0 after 10% of training.

5) Total Loss: With all the aforementioned loss functions,
the total loss function is formulated such that

Lt = λbLb + λsLs + λvLv + λrLr, (8)

where λb, λs, λv , and λr are weighting factors.

C. Network Architecture

The proposed method consists of two sub-networks, includ-
ing the deraining networks to estimate a rain streak and the
directional gradient networks to enforce the estimated rain
streak to have a few dominant gradient directions.

1) Deraining Networks: We formulate the deraining net-
works as encoder, dynamic fusion module, and decoder, as
illustrated in Fig. 4. Based on the intuition that rain artifacts
can be encoded at multiple scales [5], [19], [22]–[24], [61],
we present multiple encoders E3, E5, and E7 consisting of
convolution layers having kernel sizes of 3 × 3, 5 × 5, and
7× 7, respectively, as shown in Table I.

The features from multiple encoders are fused to predict
the rain streaks (S). Multiple features from multiple encoders
have its own receptive field containing various spatial contex-
tual information. However, a simple concatenation disregards
the characteristic of each feature [65] and may provide a
limited performance. To address this limitation, we introduce
a dynamic fusion module to find an optimal fusion weight.
The dynamic fusion module dynamically combines the output
feature of E3, E5, and E7, where the optimal fusion weight
WG,∗
E can be learned with respect to each input with an

additional convolutional network using filter-generator [34]
such that

WG,∗
E = G(E3(I), E5(I), E7(I);W

G
E ), (9)

TABLE I
NETWORK ARCHITECTURE OF THE MULTI-SCALE ENCODER OF

DERAINING NETWORKS, WHERE ‘KERNEL’ REPRESENTS THE KERNEL
SIZE OF CONVOLUTION LAYER, AND ‘CH. I/O’ AND ‘DO. I/O’

REPRESENTS CHANNELS AND DOWNSCALING FACTORS OF INPUT AND
OUTPUT RELATIVE TO THE INPUT, RESPECTIVELY.

E3 encoder
Layer Kernel Ch. I/O DO. I/O

conv1 1 3 3×3 1/64 1/1
conv1 2 3 3×3 64/64 1/1

max Pool1 3 2×2 64/64 1/2
conv2 1 3 3×3 64/128 2/2
conv2 2 3 3×3 128/128 2/2

max Pool2 3 2×2 128/128 2/4
conv3 1 3 3×3 128/256 4/4
conv3 2 3 3×3 256/256 4/4
conv3 3 3 3×3 256/256 4/4

Max Pool3 3 2×2 256/256 4/8
E5 encoder

conv1 1 5 5×5 1/64 1/1
conv1 2 5 5×5 64/64 1/1

max Pool1 5 2×2 64/64 1/2
conv2 1 5 5×5 64/128 2/2
conv2 2 5 5×5 128/128 2/2

max Pool2 5 2×2 128/128 2/4
conv3 1 5 5×5 128/256 4/4
conv3 2 5 5×5 256/256 4/4
conv3 3 5 5×5 256/256 4/4

Max Pool3 5 2×2 256/256 4/8
E7 encoder

conv1 1 7 7×7 1/64 1/1
conv1 2 7 7×7 64/64 1/1

max Pool1 7 2×2 64/64 1/2
conv2 1 7 7×7 64/128 2/2
conv2 2 7 7×7 128/128 2/2

max Pool2 7 2×2 128/128 2/4
conv3 1 7 7×7 128/256 4/4
conv3 2 7 7×7 256/256 4/4
conv3 3 7 7×7 256/256 4/4

Max Pool3 7 2×2 256/256 4/8

with WG
E denotes the parameters of filter generator. Since

WG,∗
E is conditioned on input features, we can find more

optimal fusion weights. The concatenated features are then
convolved with the generated filter, and resulting features are
fed into the decoder. We will verify the effectiveness of the
dynamic fusion module compared to other fusion methods in
Section IV.C.2.

In the decoder, the spatial resolution of the encoder feature
is progressively enlarged through the sequences of deconvo-
lution and convolution layers, as shown in Table II. Each
layer is composed of 3 × 3 deconvolution and convolution
layers followed by ReLU, and is connected to the encoder
using skip connections. The deconvolution layer consists of
the transposed convolution with fixed bilinear upsampling
kernel. The decoder yields the same resolution output as an
input image. In addition, the decoder output, denoted by S,
is subtracted from the input image using a subtraction layer.
A clipping layer is finally applied to the residual to prevent a
final output, denoted by B, from being a negative.

2) Directional Gradient Networks: To regulate the esti-
mated rain streak to have a few dominant gradient directions,
we introduce the directional gradient networks, as shown in
Fig. 5, where a few dominant gradient directions of rain streaks
are trained as cluster centers [68]–[70]. The networks consist
of convolution layers and a soft-max layer. The convolution
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TABLE II
NETWORK ARCHITECTURE OF THE FILTER-GENERATOR AND DECODER OF

DERAINING NETWORKS, WHERE ‘KERNEL’ REPRESENTS THE KERNEL
SIZE OF CONVOLUTION LAYER, AND ‘CH. I/O’ AND ‘DO. I/O’

REPRESENTS CHANNELS AND DOWNSCALING FACTORS OF INPUT AND
OUTPUT RELATIVE TO THE INPUT, RESPECTIVELY. ‘DYN’ AND ‘MK’

MEANS DYNAMIC AND MAKE, RESPECTIVELY.

Filter-generating Networks
Layer Kernel Ch. I/O DO. I/O

dyn concat - 256×3/768 8/8
mk dyn filter 1×1 768/768×256 8/8

dyn filter 1×1 768/256 8/8
Decoder

Layer Kernel Ch. I/O DO. I/O
deconv3 3×3 256/256 8/4
concat3 - 256×2/512 4/4
conv3 3×3 1024/256 4/4

inv-conv3 3 3×3 256/256 4/4
inv-conv3 2 3×3 256/256 4/4
inv-conv3 1 3×3 256/128 4/4

deconv2 3×3 128/128 4/2
concat2 - 128×2/256 2/2
conv2 3×3 512/128 2/2

inv-conv2 2 3×3 128/128 2/2
inv-conv2 1 3×3 128/64 2/2

deconv1 3×3 64/64 2/1
concat1 - 64×2/128 1/1
conv1 3×3 256/64 1/1

inv-conv1 2 3×3 64/64 1/1
inv-conv1 1 3×3 64/1 1/1

layers consist of a set of k filters Wk that have spatial
support 3 × 3 and biases bk. The output of the convolution
layers is passed through the soft-max function to obtain a
soft assignment αk(θi) that weights the different terms in
the cluster center layer. The weighted sum of θi and αk(θi)
are trained in cluster center layer. By minimizing Eq. 6,
we estimate Wk and bk. Note that the directional gradient
networks play the role of regularizing the deraining networks,
and are not used during an inference.

D. Time-lapse Sequence Dataset

1) Observation: Existing synthetic rain datasets have lim-
ited realism to model real rainy characteristics [24], [25].
There are some datasets [2], [27], [37], [51] generated syn-
thetically by commercial software program such as Adobe
After Effects1, but they incur the domain adaptation problem.
Instead, we construct the time-lapse sequences that enable
our method to estimate background images through the struc-
ture preserving property [30]–[32]. Note that there were no
attempts to use the time-lapse data to train the deraining
networks directly.

1https://www.adobe.com/AfterEffects
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Fig. 6. Examples of synthetic rain dataset and our time-lapse sequences from
real world. Our dataset contains more general rainy circumstances.

TABLE III
OVERVIEW OF THE EXISTING DATASETS AND OUR DATASET. Total., Train.,
AND Test. DENOTE THE TOTAL NUMBER OF DATASETS, TRAINING, TESTING

IMAGES, RESPECTIVELY. ‘*’ DENOTES THAT THE METHOD REQUIRES
ADDITIONAL TRAINING DATA FOR TRAINING.

Dataset Total. Train. Test. Additional data

Synthetic rain dataset

DDN [4] 14,000 9,100 4,900 -
CGAN [20] 1,300 1,200 100 -

JORDER [5]* 2,200 2,000 200 Binary map
DID [22]* 13,200 12,000 1,200 Density level

Real rain dataset

SPANet [24]* 29,500 28,500 1,000 Attention map
Ours 80,910 80,910 - -

2) Data Acquisition: We built up the training data con-
sisting of the time-lapse sequences, each of which contains
the same background scenes with different rain streaks, by
taking our own real time-lapse data and collecting them from
Youtube. For a better generalization, we considered various
rain conditions at diverse scenes. We mounted a camera (Sony
A7M2) on a tripod, and acquired 110 time-lapse sequences for
outdoor scenes. 76 time-lapse sequences were also collected
from Youtube. Since a rainy video, in which both camera
and scenes are static over all frames, is rare among public
videos, we extracted the static part of the rainy video. The
time-lapse data was carefully examined to ensure that images
in each set contain the various rain types in terms of shapes,
directions, and sizes of rain streaks. Note that all the time-lapse
sequences taken from real environments have no ground truth
backgrounds. Fig. 6 and Table III show the comparison of ex-
isting datasets and our dataset quantitatively and qualitatively.
Our dataset improves the deraining performance effectively
on real rainy images. The effectiveness of our dataset will be
discussed in experiments.
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(a) Input (b) JCAS [35] (c) DDN [4] (d) DID [22] (e) JORDER [5]

(f) NLEDN [57] (g) PReNet [41] (h) SIRR [25] (i) SPANet [24] (j) Ours

Fig. 7. Visual comparison of single image deraining on real rain images. Note that we collect real world examples from [5], [20] and our dataset.

TABLE IV
QUANTITATIVE COMPARISON OF THE STATE-OF-THE-ARTS AND PROPOSED METHOD ON SPANET DATA [24].

DSC [17] GMM [18] JCAS [35] DDN [4] JORDER [5] DID [22] NLEDN [57] PReNet [41] SIRR [25] SPANet [24] Ours

PSNR 32.64 34.30 34.95 34.88 35.72 28.96 36.24 36.08 35.85 38.06 38.54
SSIM 0.932 0.943 0.945 0.973 0.977 0.941 0.980 0.978 0.972 0.987 0.989
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(a) Input (b) Ground truth (c) DDN [4] (d) DID [22] (e) JORDER [5]

(f) NLEDN [57] (g) PReNet [41] (h) SIRR [25] (i) SPANet [24] (j) Ours

Fig. 8. Visual comparison of single image deraining on SPANet [24].

TABLE V
QUANTITATIVE COMPARISON OF SINGLE IMAGE DERAINING USING VARIOUS SYNTHETIC DATASET. GT MEANS THE METHOD USING PAIRED GROUND
TRUTH DATA. ‘*’, ‘**’, AND ‘***’ INDICATE THAT THE METHODS REQUIRE ADDITIONAL SUPERVISED CUE, I.E., BINARY MASK MAP, RAIN DENSITY

LEVEL, AND ATTENTION MAPS RESPECTIVELY. THE HIGHER THE PSNR AND SSIM, THE BETTER.

Benchmark GT Training data Test set PSNR SSIM Test set PSNR SSIM Test set PSNR SSIM

DSC [17] No - DDN 20.08 0.78 JORDER 23.39 0.86 DID 21.44 0.78
GMM [18] No - DDN 20.66 0.81 JORDER 24.25 0.87 DID 22.75 0.83
DDN [4] Yes DDN DDN 25.63 0.88 JORDER 25.99 0.81 DID 27.33 0.89
JORDER [5]* Yes JORDER DDN 22.26 0.84 JORDER 35.23 0.96 DID 24.32 0.86
DID [22]** Yes DID DDN 26.07 0.90 JORDER 30.48 0.93 DID 27.95 0.90
NLEDN [57] Yes JORDER DDN 29.79 0.90 JORDER 36.57 0.95 DID 30.48 0.91
PReNet [41] Yes JORDER DDN 32.55 0.94 JORDER 37.35 0.97 DID 31.20 0.90
SIRR [25] Yes DDN DDN 28.44 0.89 JORDER 32.37 0.92 DID 28.44 0.89
SPANet [24]*** Yes SPANet DDN 29.76 0.90 JORDER 34.46 0.96 DID 28.76 0.90

Ours No Time-lapse DDN 33.73 0.94 JORDER 37.89 0.98 DID 33.25 0.93

E. Implementation Details

The proposed networks were implemented with the VLFeat
MatConvNet library [71] library, using an NVIDIA GeForce
GTX 1080 Ti GPU. All training images were cropped and
then resized to 128 × 128 with a batch size of 4. We did not
use data augmentation such as flipping and rotating because
our data already contains sufficiently various scenes. For an
efficient stochastic optimization, the Adam solver [72] was
adopted with a fixed learning rate of 10−4 and momentum
of 0.9. We set k = 4, λb = 1, λs = 0.1, λv = 0.01, and
λr = 0.001. We set C = 186 and N = 30. For each rainy
sequence, 2 images were sampled from 30 images, and thus
total number of combinations is 186 × 30C2 = 80,910. The

E3 encoder networks were the same architecture as the first
7 layers of VGG network [64]. Our method takes 2 days for
training.

IV. EXPERIMENTS

A. Experimental Settings.

In experiments, we evaluated the proposed method in
comparison to conventional hand-crafted approaches, such
as discriminative sparse coding (DSC) [17], Gaussian mix-
ture model (GMM) based method [18], joint convolutional
analysis and synthesis sparse representation (JCAS) [35]2

2https://sites.google.com/site/shuhanggu/home
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(a) Input (b) Ground truth (c) DDN [4] (d) DID [22] (e) SIRR [25] (f) SPANet [24] (g) Ours

Fig. 9. Results of single image deraining using synthetic JORDER test data [5]: (a) the input image, (b) ground truth image, (c) DDN [4], (d) DID [22], (e)
SIRR [25], (f) SPANet [24], and (g) Ours.

(a) Input (b) DAF-Net [58] (c) DID [22] (d) NLEDN [57] (e) SIRR [25] (f) SPANET [24] (g) Ours
Fig. 10. Comparison results from the proposed method against those from the state-of-the-art methods on real rain images accompanied with haze.

and CNN based supervised approaches such as deep de-
tailed network (DDN) [4]3, joint rain detection and re-
moval (JORDER) [5]4, density-aware single image de-raining
network (DID) [22]5, non-locally enhanced encoder-decoder
network [57] (NLEDN)6 progressive image deraining net-
works [41] (PReNet)7, Semi-supervised Transfer Learning
for Image Rain Removal [25] (SIRR)8, Spatial Atten-
tive Single-Image Deraining [24] (SPANet)9, JORDER-
E [43], Depth-attentional Features for Single-image Rain Re-
moval [58] (DAF-Net)10, and Heavy Rain Image Restora-
tion [59] (HeavyRain)11. We used the pre-trained models
provided by authors for comparison. Our method was trained
with our time-lapse data using the dynamic fusion module and
all loss functions.

For evaluation on real images, we use the SPANet [24] that

3https://xueyangfu.github.io/projects/tip2017.html
4http://www.icst.pku.edu.cn/struct/Projects/joint rain removal.html
5https://github.com/hezhangsprinter/DID-MDN
6https://github.com/AlexHex7/NLEDN
7https://github.com/csdwren/PReNet
8https://github.com/wwzjer/Semi-supervised-IRR
9https://stevewongv.github.io/derain-project.html
10https://github.com/xw-hu/DAF-Net
11https://github.com/liruoteng/HeavyRainRemoval

provides 1,000 paired pseudo ground truth testset consisting
of natural rain scenes using percentile filtering. We also use
some examples collected from previous works [5], [20] and
our dataset. We measure the performance of the synthesized
data using two metrics, including Peak Signal-to-Noise Ratio
(PSNR) and Structure Similarity Index (SSIM).

For synthetic data evaluation, we use three benchmark
datasets, provided by DDN [4], JORDER [5], and DID [22].
DDN [4] provides 4900 rainy/clean image pairs, which were
synthesized from 350 clean images with 14 different rain
streaks. JORDER [5] provides Rain100H and Rain100L each
of which consists of 100 images selected from BSD200 [73].
As pointed out in [5], [57], since the synthesized examples
in Rain100H are inconsistent with real images, we used
Rain100L for performance evaluation. The DID [22] provides
1,200 image pairs containing rain streaks with different ori-
entations and scales, where 400 images are provided for each
per rain density level (i.e., light, medium and heavy).

Furthermore, to evaluate the proposed method on the chal-
lenging scenarios that contain not only rainy but also haze
degradations, we additionally collected the rainy images with
haze from Internet.
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B. Comparison with the State-of-the-Arts

1) Analysis on Real World Data: We first measured the
deraining performance of all competing methods and ours
on real rainy images. We collected real world dataset from
previous works [5], [20], [24] and our dataset. Fig. 7 shows
the qualitative evaluations on real rainy images. While existing
methods [3], [5], [22], [24], [25], [57] suffer from artifacts on
long and thin rain streaks, our method effectively removes
various types of rain streaks and preserves background infor-
mation well. The derained results on real rain images taken
from different rain conditions and various scenes demonstrate
the superiority of our method. Note that although the state-
of-the-art methods [24], [25], [41], [57] achieve significant
performance on synthetic datasets, their performance was
limited to real rainy image. They had a difficulty in com-
prehensively considering the complex distribution of real rain
since they could not generalize various type of rain perfectly.
We also reported quantitative and qualitative comparisons on
the SPANet data [24] as shown in Fig. 8 and Table IV.
As shown in Table IV, the model-driven method such as
JCAS [35] even outperforms some CNNs based methods, i.e.,
DDN [4] and DID [22]. Note that although the CNNs based
methods are generally superior to handcrafted methods, they
still suffer from generalization issue on real world data. For
instance, PReNet [41] and SIRR [25] make some holes on
rain regions (result in the first row in Fig. 8 (g) and result
in the second row in Fig. 8 (h)). Unlike these, our method
achieves an outstanding performance over existing state-of-
the-art methods.

2) Analysis on Synthetic Data: We analyzed the supervised
learning based methods [4], [5], [22], [24], [25], [41], [57] on
various synthetic data. The comparison was summarized in
Table V and Fig. 9. As shown in Table V, recent supervised
learning based methods clearly outperform most hand-crafted
methods [17], [18]. However, those trained deep models show
limited performance on other synthetic datasets. Especially,
due to a low generalization capability, JORDER [5] shows
substantially degraded performance on DID [22] and DDN [4]
test set. They still include rain streaks on JORDER [5] test
set as exemplified in Fig. 9(c) and (d). Similar results have
been shown from other methods and datasets, implying that
the supervised learning based methods using specific synthetic
data have limited generalization. The proposed method consis-
tently achieves the best quantitative performance compared to
other supervised methods as shown in Table V. The qualitative
results in Fig. 9 show that our method generates plausible
derained images at the synthetic data. It is noteworthy that
although our network uses only time-lapse sequences without
using any ground truth data, it outperforms the state-of-the-art
supervised methods on synthetic dataset.

3) Analysis on Rainy with Haze : For more analysis, we
conducted experiments on real rain images degraded by haze
effects. For this, we additionally collected rain image degraded
with haze from Internet. Then, we applied our network to
estimate derained images, and compared with state-of-the-
art methods including DAF-Net [58] which proposed a rain
imaging model with rain streaks and haze. Fig. 10 shows

(a) (b) (c)

Fig. 11. Comparison of the deraining networks trained without and with
directional gradient loss function: (a) input image, results of our method
trained (b) without and (c) with directional gradient loss function. Our
deraining networks with directional gradient loss function more effectively
remove rain streaks.

TABLE VI
QUANTITATIVE COMPARISON OF THE PROPOSED METHOD TRAINED WITH

VARIOUS LOSS FUNCTIONS WITH AND WITHOUT DYNAMIC FUSION
MODULE. DYN. DENOTES THE DYNAMIC FUSION MODULE.

Lr Lb Ls Lv Dyn. PSNR SSIM

3 3 37.68 0.981
3 3 3 37.92 0.985

3 3 3 38.01 0.986
3 3 3 3 38.11 0.986
3 3 3 3 38.29 0.987

3 3 3 3 38.46 0.988
3 3 3 3 3 38.54 0.989

(a) (b) (c)

Fig. 12. Performance gain by dynamic fusion module: (a) input image, results
of our method trained (b) without and (c) with dynamic fusion module. Our
deraining networks with dynamic fusion module more effectively remove rain
streaks.

our comparison results. The first row shows the derained
results under long and thin rain accompanied with haze. While
existing methods are difficult to handle the long diagonal
rain streaks, our method is successful in removing the rain
streaks even with haze. SIRR [25] generates the derained
result corrupted the background. DAFNet shows haze removal
effectively, however, it leaves some rain streaks. The second
row shows that the existing methods fail to remove large and
small rain streaks in the light haze. Though DAF-Net could
handle haze removal, it is still challenging in rain removal.
Unlike those, our method could remove rain streaks affected
by haze in real rainy image thanks to our time-lapse sequences
acquired in the real world and composed of various real
circumstances.

C. Ablation Study

We conducted an ablation analysis on different components
and loss functions in our framework. For the quantitative
evaluation, we used the test split of the SPANet [24].

1) Analysis of Loss Functions: Using time-lapse sequences
from our dataset, we evaluated the effectiveness of the pro-
posed loss functions, including reconstruction loss, structure
similarity loss, background consistency loss, and directional
gradient loss. In Table VI, we start from the our model trained
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No ground truth. r = 2. r = 10. r = 25. r = 50. r = 100.

Input. r = 2. r = 10. r = 25. r = 50. r = 100.

Ground truth. r = 2. r = 10. r = 25. r = 50. r = 100.

Input. r = 2. r = 10. r = 25. r = 50. r = 100.

Fig. 13. Visual comparison of time-averaged results (first and third rows) and our results (second and fourth rows) on real (first and second rows) and synthetic
(third to fourth rows) time-lapse data. Note that r is the number of input images that contains different rain streaks.

PS
N

R

Our Method
Averaged time-lapse data

the number of input images with rain streaks

Fig. 14. Quantitative evaluation of the proposed method and averaged time-
lapse sequences on the JORDER [5] dataset (Rain 100L).

with Lr and Lb, and sequentially add other components. At
first, we compare the model trained with and without structure
similarity loss Ls. We show that the structure similarity loss
improves the deraining results. This loss function aids the
deraining network to estimate some background information
coming from I . The second and third row show that the model

trained with directional gradient loss achieves much better
intermediate results than the model trained with reconstruction
loss. The deraining result by directional gradient loss is also
visually more plausible, as shown in Fig. 11. In Fig. 11(b) and
(c), the deraining result trained with directional gradient loss
finds main direction of rain streaks, and removes rain streaks
more precisely, demonstrating that finding main directional
gradient orientation helps deraining. We show that the results
of the model trained with all loss functions achieves the
highest PSNR and SSIM.

2) Analysis of Dynamic Fusion Module: We also evaluated
the performance of the dynamic fusion module. Table VI
shows that the model trained with the dynamic fusion module
achieves a substantial accuracy gain over the model trained
without dynamic fusion module. The effectiveness of the
proposed dynamic fusion module is also shown in Fig. 12.

Moreover, we compare the deraining performances of our
networks with several fusion methods including summation,
product, concatenation, and dynamic fusion. The summation
and product fusion produce the fused features by element-wise
summation and multiplication, respectively. The concatenation
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(a) (b) (c) (d) (e)

Fig. 15. Visualization of deraining and intermediate results on real rain image. (a) input rain image, (b) deraining results, (c) estimated rain streaks corresponding
(b), (d) feature maps from the encoder of the first convolution layers, and (e) feature maps from the decoder of the last convolution layers.

(a) Input (b) DDN [4] (c) JORDER [5] (d) DID [22] (e) SIRR [25] (f) SPANet [24] (g) Ours

Fig. 16. Visualization of deraining results and semantic segmentation on the deraining results: (a) input rain image, deraining and semantic segmentation
results using (b) DDN [4], (c) JORDER [5], (d) DID [22], (e) SIRR [25], (f) SPANet [24], and (g) Ours.

TABLE VII
QUANTITATIVE COMPARISON OF THE PROPOSED METHOD TRAINED WITH

DIFFERENT FUSION METHODS. CONCAT., SUM., PROD. AND DYN.
DENOTES THE CONCATENATION, SUMMATION, PRODUCTION, AND

DYNAMIC FUSION MODULE, RESPECTIVELY.

Sum. Prod. Concat. Dyn.

PSNR 37.98 38.02 38.11 38.54
SSIM 0.983 0.984 0.986 0.989

fusion concatenates the features in the channel dimension.
All models are trained with the total loss (Eq. (8)). The
results are quantitatively given in Table VII. Since the dynamic
fusion module dynamically learns optimal fusion weight con-
ditionally determined by multiple features, the model with the
dynamic fusion results achieves the best performance.

3) Compared with Time-Averaging: To verify the effective-
ness of our framework using the time-lapse data as weak
supervisions, we compared it with a simple time-averaging
operation. Considering the characteristics of the time-lapse
sequences taken from a static scene, simply averaging all
frames along a time may reduce an interference by rain streaks.
The time-averaging result can be used as a final derained
image, but this approach is not practical as it always requires
using multiple frames for performing the deraining task. Con-
trarily, our networks are trained using the time-lapse sequence,
but only a single input image is used during an inference.
Alternatively, the time-averaging results can play a role of
supervisions in training the proposed networks. Namely, the
proposed networks can be trained in a supervised manner with
a pair of input image and the time-averaged output. In this

case, the upper bound of the supervised learning approach is
determined by the accuracy of supervision used for training.
Fig. 13 and 14 show the qualitative and quantitative results
of the proposed method and the time-averaging operation.

In Fig. 13, our results show that the more images are used,
the better the performance. In contrast, the time-averaged
results still contain rain streaks patterns. Fig. 14 shows that
when the number of input images with different rain streaks
is small, the proposed method achieves better performance
than the time-averaging operation. Even when the number of
rain streaks in training data increases, the proposed method
still outperforms the time-averaging operation in terms of
PSNR. This indicates that our approach using the time-lapse
sequences as weak supervisions is a much better choice than
the supervised approach using time-averaged outputs as the
pseudo ground truth.

4) Analysis of Learned Features: To better understanding
what the networks encode, we provide the visualization of
learned features by our network. Fig. 15 shows a real rain
image, our results, and feature maps of the first and last
convolution layers. Fig. 15(d) shows four intermediate features
of the convolutional output of input rain image in encoder of
the first convolution layers. These contain the various types of
rain streaks, and object edges which are uncorrelated to the
rain streaks (i.e., the details of trees and grass). Fig. 15(e)
shows four intermediate features of the last decoder layer.
This feature maps show highly correlated with rain streaks.
The visualization of learned features demonstrates that the
deraining network discriminates and removes rain streaks and
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PS
N

R

The number of parameters

Network Performance

33

38

10ହ 10 10଼10

SPANet
Ours

JORDER

PReNet JORDER-E

HeavyRain

Fig. 17. Quantitative comparison of single image deraining on SPANet [24]
according to the number of parameters.

background effectively.

D. Analysis of the Number of Network Parameters

We conducted experiments to analyze the effects of the
number of parameters in our method. By reducing the number
of parameters, i.e., the kernel size of convolution layer from
3×3, 5×5, and 7×7 to 1×1, 3×3, and 5×5, and the number
of input and output channels for each layer, we measured our
performance for single image deraining. The results are shown
in Fig. 17. Surprisingly, even with the small enough param-
eters, our method still has shown competitive performances
compared to other methods. Furthermore, the performance gap
as varying the network parameters was so marginal. We guess
those networks were already having high capacity to contain
the rainy artifacts, and the high performances are attributed to
the proposed loss functions.

E. Application on High-level Tasks

Existing single image deraining methods focused mainly
on training their models on certain type of synthetic images
and then validating their methods on synthetic data and a few
real images [13]. In this section, we explore how effective the
proposed deraining method is as a preprocessing step for high-
level tasks. We applied off-the-shelf semantic segmentation
method [74] on the derained results. Since there are no rainy
images with ground truth segmentation maps, we visualized
only qualitative results. As shown in Fig. 16, our derained
image is beneficial compared to the input rainy image and
derained results obtained from state-of-the-arts methods [4],
[5], [22], [24], [25], e.g., in road region and traffic sign.

We further conducted the experiments for studying the prob-
lem of object detection in rain images. Fig. 18 shows a visual
result of object detection by applying the off-the-shelf object
detection algorithm [75]. Since rain steaks cause blur and
occlude background scenes, we expect that the performance
of object detection will degrade in rainy circumstances. It is
obviously that rain streaks can degrade the performance of
object detection, i.e., by missing detections and producing low
recognition confidence. In contrast, our derained results show
that the detection performance has a significantly improvement
over the baseline object detection algorithm.

Input Our result + detection

Fig. 18. Visualization comparison of object detection with and without
deraining.

TABLE VIII
AVERAGED PSNR AND SSIM VALUE ON SYNTHESIZED IMAGES WITH

THEIR COMPUTATIONAL TIME (SECOND). WE AVERAGED ON 1000
IMAGES WITH SIZE 512 × 512.

JORDER [5] PReNet [41] SIRR [25] SPANet [24] Ours
Time 0.18 0.08 0.71 0.11 0.39

F. Running Time

Table VIII shows the running time comparisons of our
method and existing methods. We follow the original setting
of all the released codes. On average, our method takes about
0.39s to obtain derained image of size 512 × 512.

G. Failure Cases

Even though our method achieves an outstanding perfor-
mance on various rain conditions, we found that our model
often failed to generate the derained image under heavy rain
conditions, as shown in Fig. 19. It is difficult to get clean
information from the heavy rainy image, and thus our results
are unsatisfactory and blurry results. However, our method still
outperformed the state-of-the-art methods.

(a) Input (b) JORDER [5] (c) DID [22]

(d) NLEDN [57] (e) SPANet [24] (f) Ours

Fig. 19. Failure cases: similar to other methods, our method fails to generate
derained images on extremely heavy rain conditions.
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V. CONCLUSION

We have introduced a novel learning framework to train
single image deraining networks using the time-lapse dataset.
Using the observation that multiple rainy images taken at
a static scene have consistent backgrounds, we presented
the background consistency loss to enforce the estimated
background images to be similar. A novel structural similarity
loss has been proposed to ensure that input and output images
have similar structural information. For the estimated rain
streaks image, we further introduced the directional gradient
loss to make the estimated rain streaks have the main direc-
tional gradients. The dynamic fusion module was presented
to effectively fuse multi-scale features in the deraining net-
works. Experiments have shown that our method is superior
to state-of-the-arts methods and generalizes well on real rainy
environments. In future work, we will investigate the deraining
in an unsupervised way.
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