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Abstract— We address the problem of 3D reconstruction from
uncalibrated LiDAR point cloud and stereo images. Since the
usage of each sensor alone for 3D reconstruction has weaknesses
in terms of density and accuracy, we propose a deep sensor fusion
framework for high-precision depth estimation. The proposed
architecture consists of calibration network and depth fusion
network, where both networks are designed considering the
trade-off between accuracy and efficiency for mobile devices. The
calibration network first corrects an initial extrinsic parameter
to align the input sensor coordinate systems. The accuracy of
calibration is markedly improved by formulating the calibration
in the depth domain. In the depth fusion network, complementary
characteristics of sparse LiDAR and dense stereo depth are then
encoded in a boosting manner. Since training data for the LiDAR
and stereo depth fusion are rather limited, we introduce a simple
but effective approach to generate pseudo ground truth labels
from the raw KITTI dataset. The experimental evaluation verifies
that the proposed method outperforms current state-of-the-art
methods on the KITTI benchmark. We also collect data using
our proprietary multi-sensor acquisition platform and verify that
the proposed method generalizes across different sensor settings
and scenes.

Index Terms— Depth estimation, multi-modal sensor fusion,
on-line calibration, real-time system, 3D reconstruction.

I. INTRODUCTION

PERCEIVING the 3D geometric configuration of scenes
is essential for numerous tasks in many robotics

and computer vision applications, such as autonomous
driving vehicles [2], mobile robots [3], localization and
mapping [4], obstacle avoidance and path planning [5], and
3D reconstruction [6].

To estimate reliable depth information of a scene, two tech-
niques are generally utilized, including time-of-flight (TOF),
such as RGB-D sensors [7] or 3D LiDAR scanners [8]; and
triangulation using passive matching algorithms on stereo
images [1]. For challenging outdoor scenarios, 3D LiDAR
scanners [8] have become practical solutions for 3D perception
since RGB-D sensors, such as Kinect 2 [7], often fail in the
presence of sunlight [9] and provide limited sensing range.
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3D perception with LiDAR scanners can provide very accurate
depth information with errors of the order of centimeters.

However, 3D reconstruction using LiDAR is somewhat
limited in practice. One reason is that LiDAR density is sparse
to enable covering all relevant objects in a scene. For example,
the popular HDL-64 LiDAR model covers less than 6% of
the total depths of image points. Although there have been
various efforts to interpolate depth information from sparse
3D depth points [8], the performance remains limited. Another
limitation is that LiDAR cannot acquire color information,
which can provide useful cues to understand and perceive the
scene.

Another alternative for 3D reconstruction is the triangulation
based on stereo matching algorithms, which provide dense
depth information with corresponding color information. How-
ever, 3D reconstructions from high resolution stereo images for
many of the top ranked methods on the KITTI benchmark [10]
are impractical due to their high computational complexity.
Moreover, the sensing range of stereo depth estimation, even
using state-of-the-art methods [1], [11], is substantially lim-
ited because its depth error grows quadratically with distance
from the camera origin [12]. For this reason, the sensing
ranges of commercial stereo cameras are generally short
compared to that of the LiDAR sensor.

Deep convolutional neural networks (CNNs) have recently
become popular in many robotics and computer vision
applications [13], [14], and have been used to establish reli-
able dense disparity maps from stereo images, such as
MC-CNN [11], with highly improved performance compared
to conventional hand-crafted methods, such as SGM [1].
Several methods have interpolated depth information from
sparse LiDAR point clouds by leveraging deep CNNs [15].
Compared to conventional methods [1], [8], deep CNN
techniques [11], [15] achieve more accurate depth information
under challenging outdoor environments. However, methods
defined only on stereo images [11] or sparse depth [15] can-
not simultaneously overcome both domain limitations [16].
Furthermore, CNN based methods require high computational
complexity and memory usage, and hence are generally not
practical for mobile systems.

Therefore, optimal fusion of LiDAR and stereo depth infor-
mation could provide a practical solution to estimate high pre-
cision depth by leveraging complementary properties of each
approach, as shown in Fig. 1. To construct a practical fusion
system for LiDAR and stereo depth information, the current
study focused on LiDAR-Stereo extrinsic calibration, and
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Fig. 1. Complementary (a) sparse LiDAR and (b) (semi) dense stereo
disparity characteristics, and (c) outcomes for the proposed method to fuse
them within deep CNNs.

LiDAR-Stereo depth fusion. Online extrinsic calibration com-
pensates for calibration quality degradation caused by practical
driving conditions and enables the sensor fusion system to
operate for longer periods. LiDAR-Stereo depth fusion solves
inherent limitations of the individual sensors by selectively
using complementary input sensor data, and obtains optimal
depth information for outdoor 3D reconstruction. Since both
approaches have shown limited performance with hand-crafted
modules [16], [17], we improve their performance by lever-
aging high discriminative power of deep neural network. It is
also essential to formulate the problems in a unified system
and improve the efficiency of its architecture for practical
applications.

This paper presents a CNN architecture to estimate high
precision depth information by jointly utilizing uncalibrated
LiDAR point clouds and stereo images. The proposed
architecture consists of calibration and depth fusion networks,
each addressing the two main problems discussed above
while improving the performance of conventional approaches.
By performing efficient stereo matching preprocessing,
the calibration network reformulates the complex multi-modal
calibration in the depth domain, simplifying the overall
calibration process. Thus, accurate calibration parameters
are estimated even with shallow network architecture. The
depth fusion network fuses two complementary disparity
maps by estimating reliable depth information sequentially.
Incorporating the dilated convolution layer [18] maximizes
the receptive field of the cascaded depth estimation modules
and obtains improved depth information with compact
network parameterization. Since limited training data is
available for LiDAR and stereo fusion, we build a large
dataset with pseudo ground truth labels, densified with
raw LiDAR scans and the disparity map from an off-
the-shelf stereo matching algorithm and its corresponding
confidence, based on the raw KITTI benchmark [19].

Experimental results verified that the proposed approach
outperformed current stereo disparity estimation [1], [11],
LiDAR interpolation [20], LiDAR and camera
calibration [21], and LiDAR and stereo depth fusion [16]
methods on the KITTI benchmark [10]. We also constructed
YONSEI datasets and evaluated stability and robustness for
the proposed approach across different LiDAR channels and
camera models.

This manuscript extends its preliminary conference
version [22] with the following major differences: (1) Since
daily changing calibration parameters may cause calibration
errors between two input sensors [21], we incorporate an
online calibration process into the depth fusion system. (2) In
contrast to current LiDAR-camera calibration algorithms [16],
we reformulate the calibration process in the depth domain by
estimating depth information from stereo images, enhancing
calibration accuracy even with a small number of network
parameters. (3) We report qualitative and quantitative com-
parisons for the proposed method with current state-of-the-art
approaches on various datasets.

The remainder of this paper is organized as follows.
Section II describes related works in the field of depth esti-
mation from LiDAR and stereo sensors. Section III presents
the proposed uncalibrated LiDAR-Stereo depth fusion system,
and Section IV describes the training method for the proposed
networks. Section V provides experimental results and discus-
sions, and Section VI summarizes and concludes the paper.

II. RELATED WORK

This section reviews related studies for 3D reconstruction
with color camera or LiDAR sensor, or both.

A. Depth Interpolation

3D LiDAR sensors are commonly employed to map outdoor
scenes because of their high acquisition accuracy. However,
since LiDAR data is sparse and incomplete, it is unsuitable
for 3D reconstruction. Many approaches have been proposed
to interpolate the sparse depth points and achieved reli-
able performance. These studies can be broadly divided into
non-guided and guided interpolation approaches.

Early non-guided interpolation studies estimate
high-resolution depth information by finding similar
patches [23], [24]. CNN based methods [25] have recently
been shown to outperform conventional interpolation
techniques in terms of accuracy and efficiency.

Guided interpolation approaches leverage structure infor-
mation from high resolution color images based on the
assumption that color and depth are structurally similar [26].
The most popular approach is guided bilateral filtering [27],
with many variants [20], [28], [29], due to its efficiency and
its reliable performance. A color guided end-to-end model
was recently proposed in [15], which also surpassed con-
ventional algorithms. However irregular input patterns and
LiDAR data sparsity compromises guided interpolation depth
estimation performance. To overcome these limitations, vari-
ous studies analyzed and formulated LiDAR data characteris-
tics. Premebida et al. [8] penalized LiDAR points Euclidean
distances and ranges to model positional relationships and
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uncertainties in sensor returns, respectively. To deal with
various sparse data patterns, Drozdov et al. [30] proposed
an interpolation scheme based on the total generalized varia-
tion (TGV) [31] and superpixel processing. Uhrig et al. [32]
addressed the problem of sparsity and irregular data patterns
in a deep learning formulation, and proposed a convolutional
layer that calculated weights according to their locations.

B. Stereo Matching

In the field of computer vision, methods to estimate
depth information from a stereo camera have been a major
focus. Local methods for patch-level comparison were initially
employed [19], [33], but local stereo matching methods often
fail in challenging scenarios, such as weakly textured or
saturated regions. Therefore, recent studies [34] have con-
centrated on global methods, considering smoothness con-
straints between neighboring pixels. Among these algorithms,
SGM [1] based approaches remain one of the most popular
algorithms for practical applications, from self-driving cars to
autonomous surveillance, due to its computational efficiency,
accuracy, and simplicity. CNN models have been proposed
recently for accurate depth estimation, and MC-CNN [11]
showed excellent performance on the KITTI benchmark [10]
using CNN based features at patch level. However, the com-
putational complexity of this model is higher than that of
SGM, so it is burdensome for commercial systems. In contrast,
Kuzmin et al. [35] employed very fast classical matching
scores in a CNN model and achieved real-time performance,
but accuracy was unacceptable for 3D reconstruction.

C. LiDAR and Camera Calibration

Multi-modal sensor fusion approaches have been studied
to leverage complementary properties of sensors in various
applications [13]. Among them, LiDAR and camera fusion
is one of the most frequently considered setups in outdoor
situations [36], preceded by extrinsic calibration to align the
coordinate systems. Unnikrishnan et al. [37] first addressed
LiDAR and camera calibration, proposing an interactive
solution based on manually marking corresponding points.
To reduce the manual effort, Naroditsky et al. [38] pro-
posed an automatic calibration approach exploiting reflectance
measurements from the LiDAR scanner. Geiger et al. [39]
also proposed an automatic single shot approach leveraging
multiple chess boards and reduced the number of recordings.
However, these offline calibration approaches are not practical
solutions to deal with extrinsic parameters that change daily
because they require restricted conditions, such as a calibration
target, special room with blackout windows, or hand labeling.

Several recent studies have proposed general calibration
processes for the online scenario to correct calibration errors
based on concurrently viewed objects from LiDAR and camera
sensors. Bileschi [17] detected contours on projected depth
and image and aligned them. Pandey et al. [40] corrected
calibration parameters based on mutual information between
LiDAR reflectivity and camera intensity. RegNet [21] first
introduced CNNs into extrinsic calibration and formulated
three conventional calibration steps using a single CNN model.

Fig. 2. Flowchart of proposed system. Our system takes the LiDAR point
cloud and stereo image pair as inputs and produces the high-precision disparity
as outputs.

These algorithms have the advantage of performing calibration
in a variety of situations, but they do not always guarantee
accuracy, particularly for highly textured surfaces and shad-
ows, where it is difficult to establish correspondence between
sensor inputs.

D. LiDAR and Stereo Fusion

In the field of robotics, data fusion techniques between 3D
range sensing and stereo matching have been proposed to
leverage complementary properties of their disparity maps [3].
Badino et al. [41] proposed an efficient framework based
on dynamic programming, and Gandhi et al. [42] com-
bined time-of-flight sensors and stereo cameras. However,
these algorithms could not provide reliable depth informa-
tion due to challenging outdoor circumstances. Maddern
and Newman [16] proposed a probabilistic fusion approach
for real-time applications, but performance was significantly
reduced in areas without LiDAR information. To alleviate this
problem, we introduce a CNN model for reliable 3D image
reconstruction. Although being widely used in many computer
vision and robotics applications, to the best of our knowledge
CNNs have not been previously implemented in the context
of LiDAR and stereo depth fusion.

III. UNCALIBRATED LIDAR-STEREO DEPTH FUSION

A. Problem Formulation and Overview

Let Il and Ir be a pair of stereo images, and dL be a
sparse 3D point cloud represented in the world coordinate,
estimated by an active 3D scanner, such as LiDAR. Given
LiDAR point clouds and stereo images, the objective is to esti-
mate a parametric model for high precision depth estimation
that fuses unregistered LiDAR points with stereo disparity.
Figure 2 shows the proposed system which consists of two
main networks. The LiDAR projection module acts as a pre-
processor, recovering the initial sparse disparity map, DL ,
by projecting sparse 3D LiDAR point clouds onto the 2D
image coordinates with respect to the left image, Il , based
on an initial calibration matrix, Hinit . We leverage the dense
disparity map, DS , estimated from the stereo matching module
on Il and Ir , following [43] to compute DS in real-time, but
in principle any stereo matching algorithm could be used. The
proposed system takes DL and DS as inputs and estimates
optimal depth, D∗, for 3D reconstruction.
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Fig. 3. Illustration of the calibration network. Calibration network takes LiDAR and stereo disparities as inputs and produces calibration parameters as
outputs. The proposed network consists disparity matching and global regression modules. LiDAR and stereo disparities are registered based on calibration
parameters updated every frame.

Therefore, we designed a two-stage fully convolutional
CNN architecture to learn the parametric model for uncali-
brated LiDAR and stereo depth fusion, combining calibration
and depth fusion network. The calibration network estimates
extrinsic calibration parameters using disparity matching and
global regression modules. The disparity matching module
establishes correspondences between DL and DS , and the
global regression module updates the extrinsic calibration
parameters. The network outputs well-aligned disparity maps
that form the inputs for the depth fusion network. The depth
fusion network fuses LiDAR and stereo disparities to obtain
optimal disparity using disparity fusion and refinement mod-
ules. The disparity fusion module extracts features from each
disparity and fuses them. The refinement module to estimates
the residual for the initial disparity map, yielding a reliable
disparity map.

We found three desirable criteria for the proposed
system:

• Accuracy: The system should guarantee high quality 3D
perception even under driving situations.

• Speed: The inference step should be fast, ideally achiev-
ing high processing speeds even for high resolution
images.

• Compactness: The networks should be sufficiently com-
pact to be deployed within mobile robots or autonomous
vehicles.

The following section describes the proposed network archi-
tecture which achieves a balance between the presented criteria
and demonstrates system performance compared with current
state-of-the-art methods.

B. Calibration Network

The calibration network consists of two cascade sub- mod-
ules: disparity matching and global regression, as shown in
Fig. 3. The architecture is based on an intuition that extrinsic
calibration parameters can be calculated using disparity maps
as calibration inputs. Conventional methods [21] take different
modality data (i.e., color images and disparity maps) as inputs,
which reduces calibration performance because their nonlin-
ear relationships disturb the feature matching process [44].
In contrast, we simplify the problem by providing inputs in the
same domain, i.e., disparity domain, hence improving extrinsic
calibration accuracy and efficiency.

To estimate extrinsic calibration parameters, we define the
4 × 4 calibration matrix φcalib as [21]

φcalib =
[R(rx , ry, rz) [tx , ty, tz]T

0 0 0 1

]
(1)

where each of rx , ry, and rz represents the rotational error
angle for each axis in the world coordinate, and R(rx , ry, rz)
is their corresponding rotation 3 × 3 matrix, and [tx , ty, tz]T

is a translational error vector. The calibration parameters can
be represented as θcalib = [rx , ry, rz, tx , ty, tz]T .

When the LiDAR points are projected as the input disparity
DL using Hinit and intrinsic camera matrix, P , φcalib corrects
Hinit error,

[u, v, 1]T = P Hinit φ−1
calib[x, y, z, 1], (2)

where

P =
⎡
⎣ fu 0 cu − fubs

0 fv cv 0
0 0 1 0

⎤
⎦, (3)

(x, y, z) and (u, v) are a LiDAR point in the world coordinate
and the corresponding pixel location in image coordinates,
respectively; and ( fu, fv ), (cu, cv ), and bs are the stereo
camera focal length, principal point, and baseline, respectively.

Leveraging this updated transform function, dL is
re-projected onto DL more accurately, and its disparity can
be calculated as

DL(u, v) = bs fu/x (4)

Based on this formulation, we design the calibration net-
work to estimate θcalib as follows.

1) Disparity Matching Module: Intermediate features are
extracted from D1/4

L and D1/4
S , which are the down sampled

from DL and DS , respectively, with scaling factor 4, and com-
bined through concatenation and convolution layers to estimate
their feature correspondence. There are two advantages to
extract intermediate features from disparity inputs.

First, the network exhibits accurate calibration performance
even with high sampling factors, because this approach is
robust to highly textured surfaces and shadows which are
common limitations of conventional multi-modal input based
approaches [45]. Second, since the stereo color image is
converted into disparity information, the network is robust
to differences in camera models and can be generalized
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TABLE I

SPECIFICATION OF THE CALIBRATION NETWORK

across datasets, whereas conventional CNN based methods
show degraded performance when the dataset changes. This
is experimentally demonstrated in Section V.

2) Global Regression Module: Since there is no need to
analyze the non-linearity between data of different modal-
ity, the proposed calibration approach simplifies the network
architecture. We modify the network-in-network block [46] to
minimize network parameters and build the global regression
module by connecting them. This simplification enhances the
proposed calibration network efficiency and obtains real-time
performance. The overall process of the calibration network
�C was constructed such that θcalib = �C (D1/4

L , D1/4
S ).

Table I shows the calibration network configuration.
The calibration network updates the calibration parameters

every frame, and the input disparity maps are re-aligned in
the LiDAR projection module to the original image resolution.
Since our calibration process is performed online, the proposed
fusion framework is robust to changes in calibration parame-
ters due to external forces and timing errors. In this case,
the external forces include car body torsion, temperature, and
humidity changes, and the timing errors indicate errors in time
stamp acquisition. By solving these problems, the proposed

approach has high reliability in terms of system consistency
in challenging outdoor situations.

C. Depth Fusion Network

Depth fusion network consists of two cascade sub-modules,
including disparity fusion and refinement. The architec-
ture design was inspired by two intuitions that: 1) 3D
LiDAR disparity and stereo disparity encode different aspects
of 3D geometric configuration, such that both information
provide complementary cues that can assist to reconstruct
high-precision disparity, and 2) color guidance can be utilized
to boost disparity estimation performance.

To estimate a high precision disparity map efficiently,
the key network design factor is incorporating the dilated
convolution (DC) layer, originally developed for high level
vision tasks, such as image classification and semantic
segmentation [18]. A large receptive field is essential for a
neural network [47], and deeper architecture [18] or larger
filters [48] are easy methods to ensure a large receptive field.
However, both schemes not only require more parameters, but
also increase computational burden. In contrast, DC layers
accomplish global information aggregation with very compact
parameterization.

1) Disparity Fusion Module: The fusion module, �F , con-
sists of nine layers with three different blocks, i.e., 3 ×
3 DC, batch normalization (BN), and rectified linear
units (ReLU). The dilation factors of convolutions were set to
k = 1, 2, 4, 8, 16, 8, 4, 2, and 1, respectively. The 3 × 3 DC
with factor k is a sparse filter of size (2k + 1) × (2k + 1),
i.e., only 9 entries of fixed positions can be non-zero. The
number of feature maps in each layer was set to 32. To encode
complementary information from DL and DS , the fusion
module takes them as inputs and extracts intermediate fea-
tures through the first five layers. It is desirable that those
intermediate features describe distinctive and complementary
disparity cues of each channel. The intermediate features are
then combined by concatenation at the 5th layer, and the
final 4 layers produce the fusion module output, such that
DF = �F (DL , DS).

2) Refinement Module: The refinement module, �R has the
same specification as �F , i.e., 9 layers with three different
3 × 3 DC, BN, and ReLU blocks. In contrast to �F , �R

is designed to enhance the DF quality using color guidance.
Another difference is that DR does not directly compute D∗,
but rather the residual DR = D∗−DF to DF . After adding DF

to the residual, the final disparity is D∗ = DF + �R(DF , Il).
The computation of this residual is particularly beneficial for
�R , since it does not need to carry the input information
through the whole network [50]. Guided by Il , �R only
estimates high frequency details, omitted in DF . Table II
shows the depth fusion network configuration.

Figure 5 shows example input disparity maps DL and DS

and output disparity map D∗ from the proposed network.
Figure 5, row 2 shows that DL provides sparse depth infor-
mation, whereas DS is dense but inaccurate (see Fig. 5,
row 3). When LiDAR fails to acquire depth information for
high reflectance material, especially in cars and windows of
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Fig. 4. The illustration of the depth fusion network. Depth fusion network takes LiDAR and stereo disparities as inputs and produces high precision disparity
map as output. The proposed network consists disparity fusion and refinement modules.

Fig. 5. Proposed system LiDAR and stereo fusion examples: (from top to bottom) Input color image, LiDAR disparity, SGM [1] results, and proposed
system results.

buildings, the proposed algorithm succeeds in filling these
information by fusing it with the dense stereo disparity map.
When stereo matching fails to acquire depth information for
thin objects, the proposed algorithm also succeeds in acquiring
accurate depth information by fusing it with the sparse and
accurate LiDAR disparity map. The fattening phenomenon
frequently observed in stereo disparity maps [1] is also solved
based on LiDAR information. By simultaneously using LiDAR
and stereo disparities, the proposed network provides a dense
and accurate disparity map that can be successfully employed
for high precision 3D reconstruction.

IV. TRAINING

A. Generating Training Data

Training the proposed networks requires a large dataset
consisting of 3D LiDAR points, stereo images, extrinsic cal-
ibration parameters, and ground truth disparity maps. Unfor-
tunately, there are few benchmarks including extrinsic cali-
bration parameters and dense ground truth disparities, hence
supervised learning for the proposed CNN models is problem-
atic. Although training on indoor or synthetic datasets [51] is

possible, it remains an open question if the level of accu-
racy obtained is sufficient for challenging outdoor situations.
Therefore, we created three large training datasets based on
the KITTI raw data [19] which is comprised of 42,382 stereo
image frames with corresponding LiDAR point clouds and
extrinsic calibration parameters for each frame.

1) LiDAR Data for Calibration: To calculate extrinsic
calibration parameters between LiDAR and camera, most
datasets incorporate calibration steps with offline calibration
methods, e.g. [26] and [28]. These methods employ specific
calibration target and hand labeling, respectively, and provide
quite accurate results. However, their calibrations require high
computational complexity for target setting and/or additional
human modification, and are unsuitable for constructing large
databases to train the proposed networks. Therefore, we con-
structed a calibration dataset, similar to [21]. It was done by
applying the artificial calibration error θgt to the original cal-
ibration parameter of KITTI dataset. Initial LiDAR disparity
maps DL were built by projecting LiDAR point clouds dL

with the calibration parameters including θgt . This approach
can generate various training data by applying randomized θgt

to only a few offline calibration results. An infinite number
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TABLE II

SPECIFICATION OF THE DEPTH FUSION NETWORK

of calibration training sets can be generated by varying θgt .
Another advantage of the calibration approach is that we can
determine a range of calibration errors. The proposed system
was designed to be executed in driving situations, and we set
calibration range as 20 cm and 2◦ similar to [21], considering
the calibration quality degradation between the sensors due to
external forces and timing errors.

2) LiDAR Data for Depth Fusion: Although the KITTI
dataset provides depth information from raw Velodyne scans,
the density of a 3D point cloud from a single frame is
insufficient to train the CNN based depth fusion model.
Furthermore, significant manual effort is required to remove
noise due to occlusions and dynamic objects. To overcome
these limitations, following [19], we accumulated the previous
11 frames of 3D point clouds to increase the density of
the generated disparity map DV . When conflicting values
occurred, we chose the disparity closest to the color capture
time. The reference frame was independently interpolated
using color guided interpolation [52]. Although color guided
interpolation [52] leads to texture copying artifacts (Fig. 6(b)),
it is robust to outliers from occlusions and dynamic objects.
Therefore, we used the interpolated reference frame to deter-
mine outlier points and clean DV by removing them. Fig. 6(d)
shows that most outliers in DV could be removed using this
simple technique.

3) Stereo Data for Depth Fusion: Despite the accumulation,
DV contains disparity values for less than 35% of the pixels
in Il . Aside from this, disparity values were only provided for
the bottom region of Il due to inherent occlusion between
the 3D LiDAR scanner and stereo camera (see Fig. 7(a)).
We address these issues by leveraging a sophisticated stereo
algorithm and confidence measure. Given a stereo pair, Il and
Ir , we first generate disparity maps using the state-of-the-art
stereo algorithm [11], and then retain disparity values having
confidence >0.95 using [49]. Figure 7(b) shows the resulting
DS , where the density of DS is higher than that of DV . This
enables the proposed model to look at portions of the scene
seldom included in DV .

B. Loss Function

This section describes the training procedure to find optimal
network parameters for the proposed model given the training
data. Although the proposed architecture consists of fully
convolutional layers, training this in a single procedure from
3D LiDAR and stereo images as inputs to provide disparity
map output cannot guarantee the optimal global solution due
to gradient vanishing problems. To alleviate this, we employ
separate loss functions for each sub-module, and formulate
training schedules for each.

As described above, the loss function for the proposed
networks includes three terms

L = L�C + L�F + L�R . (5)

For the loss related to the calibration network, L�C , we use
the following L1-loss function

L�C = ∣∣θcalib − θgt
∣∣
1, (6)

which penalizes errors of estimated calibration parameters
θcalib from the ground truth, θgt .

The loss related to the depth fusion network, L�F , must
balance DV and DS , without over-fitting any specific scenario.
First, we apply point-wise L1-loss directly to the fusion
module

L�F =
∑

p∈�(DV )

|DF (p) − DV (p)|1

+ λ
∑

p∈�(DS)

|DF (p) − DS(p)|1, (7)

where λ > 0 is a constant that balances the two terms: larger λ
lets DS contribute more to the learning parameters; p denotes
spatial locations, and � is the set of spatial locations, including
valid disparity values. During training, most DV and DS have
some missing values, which we address by evaluating the loss
only on valid points p ∈ �

Secondly, since the residual learning strategy is adopted,
we use the refinement module loss function as

L�R =
∑

p∈�(DV )

|(DR(p) + DF (p)) − DV (p)|1

+ λ
∑

p∈�(DS)

|(DR(p) + DF (p)) − DS(p)|1. (8)

Note that the refinement module output is the residual,
hence we need to add DR to DF for the final disparity.
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Fig. 6. Outlier removal on the raw KITTI dataset [19]. Most errors due to occlusions or reflecting surfaces can be removed using the proposed simple
technique. (a) Accumulated LiDAR scans. (b) Interpolated single LiDAR scan. (c) Removed disparity points. (d) Our final DV .

Fig. 7. Depth fusion training data examples. (a) DV obtained by outlier removal and accumulation, (b) DS obtained by the stereo algorithm [11] and
confidence measure [49], and (c) support regions of DV (green) and DS (blue). The generated disparity is denser and has larger spread across the image
compared to the sparse ground-truth data available in the raw KITTI dataset [19].

C. Implementation Details

The proposed model was trained from scratch with the
Adam solver [53] using momentum = 0.9 and weight
decay = 0.0005. The whole training procedure consists of
four phases.1 It took approximately 20 hours. First of all,
we trained the calibration network for 50 epochs to register
LiDAR and stereo sensor data. After that, the disparity fusion
and the refinements module were trained sequentially for
50 epochs each with batch size of 32. When training the next
module, we kept all the parameters from the previous one.
Finally, the overall network was simultaneously trained. Learn-
ing rate was initialized at 1e-3 and then fixed at 1e-5 when
training error stopped decreasing.

V. EXPERIMENTAL RESULTS AND DISCUSSION

A. Experimental Settings

The proposed network was implemented using the VLFeat
MatConvNet toolbox [55] and trained on a NVIDIA GeForce
GTX TITAN X GPU. Network inputs were stereo images, and
corresponding LiDAR and stereo disparity maps. Since any
stereo matching algorithms could be applied in the proposed
framework, considering the trade-off between efficiency and
accuracy, we employed SGM [43], which is described in
Section V-B2. We also employed MC-CNN [11] to build the
ground truth disparity maps using the confidence estimation
technique [49]. However, the outcomes are not restricted to
specific algorithm choices.

We analyzed the proposed system performance by
comparing with current state-of-the-art extrinsic calibration
(RegNet [21]), disparity estimation from stereo images
(SGM [43] and MCCNN [11]), depth interpolation
from sparse disparity images (Bilateral upsampling [27],
WMOF [20], and Premebida et al. [8]), and LiDAR-Stereo
fusion (probabilistic fusion [16]) methods on the KITTI 2015

1It is possible to train our model in an end-to-end manner. However, in prac-
tice we observed faster convergence and increased accuracy by four-phase
learning similar to [54].

benchmark [11]. We also constructed an in-house system for
outdoor 3D scene reconstruction and evaluated the proposed
method on this dataset. Finally, we discuss the proposed
system efficiency in terms of speed and compactness.

B. Evaluation on KITTI Dataset

1) Dataset: KITTI datasets were built by Velodyne
HDL-64E LiDAR scanner and 1242 × 375 resolution stereo
camera for outdoor environments, and provide ground truth
calibration parameters and disparity maps. However, no raw
LiDAR data was provided in the KITTI benchmark test sets.
To evaluate LiDAR and stereo fusion, we used the KITTI
2015 benchmark training set [10] because its corresponding
LiDAR point cloud data could be extracted from the raw
KITTI dataset. Among 200 training images, 141 images were
included in the raw KITTI dataset, covering 28 scenes in the
raw KITTI dataset. Thus, we trained the proposed networks
on the remaining 33 scenes, containing 30,159 images and
corresponding LiDAR point clouds, following [56]. We used
the raw data development kit [10] to project LiDAR point
clouds onto the left image coordinates.

2) Calibration: Figure 8 and Table III show quantitative
evaluations on the KITTI 2015 benchmark [10] using the mean
squared error (MSE) metric. We first analyzed calibration
performance for the proposed calibration network with two
aspects: input modality and down-sampling factor (Fig. 8).
When the network takes a disparity map as stereo input, aver-
age rotation error was reduced even for high down-sampling
factors. This verifies that geometric relationships extracted
from the two disparity maps provide improved performance
because they are robust to highly textured surfaces and
shadows, where non-linearity between multi-modal inputs is
maximized. We also observed there was a tradeoff between
accuracy and computational efficiency as the down-sampling
factor changes. Average rotation error increased by a factor
of 8. Thus, we fixed down-sampling factor =4 to achieve real-
time speed.
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TABLE III

CALIBRATION ERROR ON THE KITTI 2015 BENCHMARK [10]

Fig. 8. Mean average error (MAE) of rotation and computation time
with respect to down-sampling factors for inputs on the KITTI 2015
benchmark [10]. These results show the trade-off between accuracy and
efficiency. Depth-Depth represents that LiDAR and stereo inputs are both
disparity maps and shows better accuracy than Depth-Color, which uses a
color image as the stereo input.

Table III compares the proposed network to RegNet [21].
Although RegNet provides reliable accuracy due to its CNN
based formulation and calibration approaches, it can be
improved by leveraging the proposed depth domain formu-
lation and compact network parameterization. The proposed
network achieved mean angle error =0.28◦, compared to 0.31◦
for RegNet, and showed 8-fold less memory usage and 2-fold
faster than RegNet.

Figure 9 shows the necessity to incorporate online cal-
ibration in a sensor fusion framework. Ground truths, θgt ,
for different days are not same (Fig. 9(b) and (c)). Thus,
the positional relationship between LiDAR and stereo camera
changes over time. To address this problem, we integrated the
calibration and depth fusion networks into a reliable unified
sensor fusion system. Section V-B3 evaluates depth estimation
performance.

3) Disparity Estimation: We performed quantitative evalu-
ations on the KITTI 2015 benchmark with bad-pixel error rate
measured using the KITTI stereo development kit [10].

Stereo matching algorithms can provide high resolution
depth information but have poor depth estimation accuracy for
object boundaries or far away objects. Figure 10 and Table IV
show that the proposed fusion technique can be applied to
these stereo matching techniques to correct input dispar-
ity map errors by leveraging LiDAR information. Although

Fig. 9. Calibration result examples for an online scenario based on calibra-
tions up to 0.2 m and 2◦: (a) initial parameters, (b) ground truth, (c) ground
truth for different day (2011/09/26), (d) RegNet [21], and (e) proposed
method. Scenes were captured on 2011/09/28 and 2011/09/29, respectively.
To deal with calibration parameters changing daily, we improved system
reliability by constructing the calibration network for the online scenario.

Fig. 10. Comparison with stereo matching algorithms on KITTI dataset [11].
(from up to down) Color image, the depth estimation results of SGM [1],
MC-CNN [11], and proposed method (based on SGM disparity map).
By leveraging LiDAR information, the proposed method solved the problems
of stereo matching approaches, such as fattening effects and depth estimation
failures in thin objects.

MC-CNN [11] and the corresponding fusion result shows best
accuracy among the stereo matching algorithms, they require
high computational complexity. Since an important focus was
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Fig. 11. Qualitative evaluation on KITTI dataset [11]. Compared to conventional interpolation methods, our network provides stable depth estimation
performance. (a) Input LiDAR dispariy. (b) Ground truth disparity. (c) Bilateral upsamp. [27]. (d) WMOF [20]. (e) Premebida etal. [8]. (f) Ours.

Fig. 12. Qualitative evaluation on KITTI dataset [11]. Compared to conventional LiDAR-Stereo fusion method [16], our network provides stable
depth estimation performance. (a) SGM [1]. (b) DF w/Ground truth θgt . (c) Ours w/Ground truth θgt . (d) Probabilistic fusion [16] w/Ground truth θgt .
(e) DF w/Estimated θcalib . (f) Ours w/Estimated θcalib .

TABLE IV

DISPARITY ERROR FOR STEREO MATCHING ALGORITHMS ON THE

KITTI 2015 BENCHMARK BENCHMARK [10]

real-time 3D reconstruction, SGM [43] is the most suitable
algorithm considering the trade-off between efficiency and
accuracy. By using SGM [43], the proposed fusion technique
achieved 1.42% lower disparity error and 14 times faster com-
putation time than MC-CNN [11]. Therefore, we used SGM
disparity as the stereo input for all subsequent quantitative
evaluations.

The proposed depth fusion network was further evaluated
by comparing with current state-of-the-art depth interpolation
methods, including Bilateral upsampling [27], WMOF [20],
and Premebida et al. [8]. Table V and Fig. 12 show that
the proposed approach accurately estimates depth information
even in areas where LiDAR cannot provide range information,
such as outside the viewing angle or high reflectance objects.
In these cases, the stereo depth information supplemented the
sparse LiDAR data, improving depth quality.

TABLE V

DISPARITY ERROR COMPARISON WITH DEPTH INTERPOLATION

ALGORITHMS ON THE KITTI 2015 BENCHMARK [10]

TABLE VI

ABLATION TEST FOR THE PROPOSED DEPTH FUSION SYSTEM

ON THE KITTI 2015 BENCHMARK [10]

To evaluate each module of our depth fusion network,
we measured DF and D∗ error rates, as shown in Table VI and
Fig. 12. Compared to SGM [43], which is the stereo input for
the network, the error rates of DF and D∗ were significantly
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Fig. 13. Examples of outdoor 3D scene reconstruction using proposed method on KITTI dataset [19]. By leveraging complementary properties of LiDAR
and stereo data, we can successfully reconstruct 3D model even in challenging outdoor conditions.

Fig. 14. Illustration of our system. (a) Schematic diagram, (b) our system equipped with low-channel LiDAR and stereo camera, (c) example of stereo color
image acquisition, and (d) example of LiDAR disparity acquisition.

reduced by leveraging complementary information of the two
input sensors and estimation performance was boosted by
the color guided refinement process. The proposed network
achieved error rate = 4.92%, compared with probabilistic
fusion [16] error rate = 5.75%, by taking advantage of the
high capacity CNN model. The overall computational time
of the proposed method is two times slower than that of
Probabilistic fusion [16] but is also available for real-time
applications.

Thus, the experiments verify that LiDAR and stereo depth
information complement each other, and the high receptive DC
field boosts CNN based depth estimation performance by pro-
viding context information. We also observed positive effects
for online calibration error on the disparity estimation process.
Since the performance gap between disparity estimation using
θgt and θcalib was marginal, we adopted the online calibration
process to deal with daily calibration parameter changes.

4) 3D Reconstruction: To evaluate the proposed method for
practical applications, we reconstructed the 3D model using
estimated depth information, as shown in Fig. 13. Since stereo
disparity input accuracy reduces with the square of distance,

only significant areas up to 15 m distance were visualized.
The 3D reconstruction results verify that the proposed method
successfully reconstructed 3D maps even for challenging out-
door environments.

C. Evaluation on YONSEI Dataset

1) YONSEI Acquisition Platform: Figure 14 (a) and (b)
show the acquisition sensors mounted on top of a vehicle.
Considering the vertical viewing angles of the two sensors,
LiDAR was positioned above the stereo camera to obtain as
much valid LiDAR data as possible. The sensor setup consisted
of the following sensors.

The sensor setup consisted of the following sensors:

• ZED stereo camera [57]: 60 fps, 16:9 format, 1280 ×
720 pixel resolution, 90◦ (horizontal) and 60◦ (vertical)
field of view, ∼20m depth range, 120 mm baseline

• Velodyne HDL-32E: 10 Hz, 0.7 million points/second,
32 channels, 0.16◦ angular resolution, 2cm distance accu-
racy, 360◦ (horizontal) and 41◦ (vertical) field of view,
∼70m depth range
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Fig. 15. Examples of outdoor 3D scene reconstructions using the proposed method on the YONSEI dataset. Despite various modality differences between the
YONSEI and KITTI datasets, including color camera characteristics and the number of LiDAR channels, the proposed system trained on the KITTI dataset
robustly estimated calibration parameters and depth information, and provided successful 3D reconstructions on the YONSEI dataset. (a) Calibration result.
(b) Stereo disparity of [1]. (c) Fusion disparity. (d) 3D reconstruction.

Fig. 16. Examples of outdoor 3D scene reconstructions using the proposed method on the YONSEI dataset. Despite low light conditions, the proposed
system robustly estimated calibration parameters and depth information, and provided successful 3D reconstructions. (a) Calibration result. (b) Stereo disparity
of [1]. (c) Fusion disparity. (d) 3D reconstruction.

The vehicle trunk housed a PC with Intel Core
i7- 3770 CPU and Samsung pro-850 SSD to capture sensor
data. We performed stereo camera extrinsic calibration using
the Matlab toolbox [58]. The proposed extrinsic calibration
method between LiDAR and stereo sensors (Section III-B) was
performed by using the VLFeat MatConvNet toolbox [55].
In the LiDAR and stereo camera fusion system, the data from
the two sensors must be acquired at the same time in order
to fuse them. Thus, we removed the rolling shutter effect of
LiDAR sensor, and performed synchronization between the
two sensors by using camera motion and timestamps, similar
to [10] and [59].

2) Dataset: We evaluated the proposed approach on the
above multi-sensor data acquisition system for outdoor 3D
scene reconstruction, acquiring various scene data under
challenging outdoor environments. The resulting YONSEI
dataset [60] contained 32,549 LiDAR-stereo sequential frame
sets, recorded at 10 Hz. In comparison to experiments on
the KITTI benchmark (Section V-C1), this dataset allows

investigation of the proposed systems stability and robustness
with a lower channel LiDAR sensor, which is a recent trend
in low-cost 3D LiDAR scanners.

3) 3D Reconstruction: Figure 15 evaluates the proposed
system, trained on the KITTI benchmark, on the YONSEI
dataset. Since the KITTI and YONSEI dataset image coordi-
nates are different, the calibration network cannot be directly
applied to the YONSEI dataset. Therefore, we estimated cali-
bration parameters by projecting YONSEI LiDAR and stereo
disparity maps onto the KITTI benchmark image coordinates,
obtaining YONSEI DL and DS as shown in Fig. 17. The
transformation function between the two image coordinates
can be expressed as

w [u, v, 1]T = P Hinit Ĥ −1
init P̂−1ŵ

[
û, v̂, 1

]T
, (9)

where ·̂ represents YONSEI pixel locations and calibration
parameters.

Since the stereo input images were converted into the
disparity map, the proposed calibration process can be robust



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

PARK et al.: HIGH-PRECISION DEPTH ESTIMATION USING UNCALIBRATED LiDAR AND STEREO FUSION 13

Fig. 17. The transformation process from (9). To test the proposed calibration
network trained on the KITTI dataset, we projected input disparity maps from
the YONSEI dataset onto KITTI image coordinates.

to characteristic differences between the datasets. Despite the
lower number of LiDAR channels in the YONSEI database,
the proposed networks derived accurate depth information and
satisfactory 3D scene reconstructions even under challenging
outdoor conditions.

To evaluate the proposed system under various light
environments, we also acquired data at night time as shown
in Figure 16. As it becomes darker, the accuracy of input
stereo disparity dramatically decreased. On the other hand,
the proposed fusion system always showed reliable disparity
estimation results and 3D reconstruction performance regard-
less of the light conditions, thanks to accurate depth informa-
tion of input LiDAR disparity. This experiment demonstrated
the reliability of the proposed fusion system in that it can
perceive 3D information in more diverse environments than
conventional single sensor systems.

D. Discussion

1) Speed: Table III and Table V compare computational
complexity for the proposed system with current
state-of-the-art algorithms for 1242 × 375 pixel stereo
images and 64 channel LiDAR data. The proposed algorithm
is significantly faster than the other algorithms, such as
RegNet [21] for calibration and MC-CNN [11] for stereo
matching. This verifies our main contribution that accurate
depth information can be obtained efficiently from LiDAR
point clouds and stereo images by adopting the proposed
system. The overall process takes approximately 56 ms for
one forward pass, hence the networks system is suitable for
real-time applications.

2) Compactness: The proposed system showed higher effi-
ciency in terms of memory usage compared with current
state-of-the-art algorithms, requiring only 37 MB whereas
RegNet [21] required 423 MB for only calibration process.
This verifies the other contribution: the significantly reduced
memory usage will allow other applications to be operated
simultaneously. This is especially advantageous for systems
with low total capacity, hence the proposed approach will be
suitable for mobile devices.

3) System Reliability: The proposed system shows robust
depth estimation performance than single sensor alone in
various situations including the high reflectance material and
low light conditions. However, even if the hardware syn-
chronization is performed, perfect registration between two
sensor data is practically difficult due to the timing error
and movement of dynamic objects. Our calibration network
solves the timing error by compensating displacement between
two sensors caused by it. The error caused by the dynamic
objects is hard to remove but can be minimized in depth
fusion network by selectively using two sensor data as shown
in Section V-B3.

VI. CONCLUSION

We presented a LiDAR-Stereo fusion system for high preci-
sion depth estimation. In contrast to previous methods, we for-
mulated the problem of uncalibrated sensor fusion within a
unified deep learning framework. To reduce complexity in
the multi-modal calibration process, the proposed calibration
network estimated extrinsic parameters from disparity inputs.
By incorporating a dilated convolution layer in the depth
fusion network, we efficiently fused depth information from
the input sensors. Based on these compact parameterizations,
the proposed system is suitable for various real time appli-
cations. To the best of our knowledge, this system is the
first CNN model specifically designed for uncalibrated LiDAR
and stereo depth fusion. We constructed a large dataset using
KITTI raw LiDAR data, and removed outliers in the accu-
mulated LiDAR. This was further augmented by adapting an
off-the-shelf stereo algorithm and confidence measure. We also
collected data using an in-house multi-sensor acquisition plat-
form and verified that the proposed networks outperformed
current state-of-the-art algorithms. In further work, we will
extend our approach to 3D point cloud domain to avoid loss
of information due to 2D projection process and improve 3D
reconstruction accuracy.
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