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Abstract— We present a deep convolutional neural network
(CNN) architecture for high-precision depth estimation by
jointly utilizing sparse 3D LiDAR and dense stereo depth
information. In this network, the complementary characteristics
of sparse 3D LiDAR and dense stereo depth are simultaneously
encoded in a boosting manner. Tailored to the LiDAR and stereo
fusion problem, the proposed network differs from previous
CNNs in the incorporation of a compact convolution module,
which can be deployed with the constraints of mobile devices. As
training data for the LiDAR and stereo fusion is rather limited,
we introduce a simple yet effective approach for reproducing
the raw KITTI dataset. The raw LIDAR scans are augmented
by adapting an off-the-shelf stereo algorithm and a confidence
measure. We evaluate the proposed network on the KITTI
benchmark and data collected by our multi-sensor acquisition
system. Experiments demonstrate that the proposed network
generalizes across datasets and is significantly more accurate
than various baseline approaches.

I. INTRODUCTION

Perceiving 3D geometric configuration of scene or object
is undoubtedly essential for numerous tasks in many robotics
and computer vision applications, such as autonomous driv-
ing vehicle [19], mobile robots [15], localization and map-
ping [20], obstacle avoidance and path planning [21], and
3D reconstruction [22].

To estimate reliable depth information of scene, two
kinds of techniques can be utilized, the use of active 3D
scanners such as RGB-D sensors [24] or 3D LiDAR scanners
[23] and the use of passive matching algorithms on stereo
images [12]. For challenging outdoor scenarios, 3D LiDAR
scanner [23] has been the most practical solution for 3D
perception since the RGB-D sensor such as Kinect [24]
frequently fails in the presence of sunlight [24] and provides
a limited sensing range. The 3D perception with the LiDAR
scanner can provide very accurate depth information with
errors in terms of centimeter. Reconstructing 3D using the
LiDAR would be limited in practice though. One reason is
that its density is sparse to cover all salient objects in a
scene since it offers fewer than 6 % of total image points.
Even though there exist some efforts to interpolate depth
information of sparse 3D depth points [23], its performance
is also limited. Another reason is that it cannot achieve color
information, which can be useful cue to understand and per-
ceive the scene. Another alternative for 3D perception is to
leverage the stereo disparity estimation from stereo images,
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(a) LiDAR disparity and its 3D reconstruction

(b) Stereo disparity and its 3D reconstruction

(c) Fusion disparity by our method and its 3D reconstruction

Fig. 1. Visualization of complementary characteristics of the sparse 3D
LiDAR and (semi-) dense stereo disparity, and the results of our proposed
method to fuse them.

which achieves dense depth information with corresponding
color information. However, reconstructing 3D from high-
resolution stereo images cannot be possible in practice due to
their high computational complexity, with many of the top-
ranked methods on the KITTI benchmark [14]. Moreover,
the accuracy of stereo depth estimation, even using the
state-of-the-art methods [12], [13], is substantially limited
according to sensing ranges due to not only small baseline
of stereo cameras but inherent limitations of stereo matching
algorithms. Therefore, the optimal fusion technique of the 3D
LiDAR and stereo depth information can be a solution to
estimate high-precision depth by leveraging complementary
properties of each information as in Fig. 1.

Over the past few years, deep convolutional neural net-
works (CNNs) have been become increasingly popular in
many robotics and computer vision applications [4]. In
estimating depth information, CNN based techniques have
been also popularly used to help establish reliable dense
disparity maps from stereo images, such as MC-CNN [13]
that has shown highly improved performance compared to
conventional handcrafted methods such as SGM [12]. Fur-



thermore, CNN based methods also have tried to interpolate
sparse depth information from sparse LiDAR point clouds,
with respect to the structures of the color guidance image
[8]. Compared to existing methods [36], aforementioned
techniques enabled us to achieve high-precision depth in-
formation even under outdoor environments. However, those
methods defined only on stereo images [13] or sparse LiDAR
information [8] inherently cannot overcome the limitations
of each problem formulation [18]. Moreover, there was no
effort to develop a deep CNN based method to mutually
benefit from 3D LiDAR and stereo depth information.

In this paper, we present a deep CNN architecture to
jointly utilize 3D LiDAR and stereo depth information for
high-precision disparity estimation. This architecture differs
from previous CNNs in several ways tailored to our particular
problem. One is that the two complementary disparity maps
are formulated as inputs in a synergistic manner, which
allows each depth information can be boostly used. Another
is the compact convolution architecture that can be deployed
with the constraints of mobile devices. Furthermore, since
limited training data is available for LiDAR and stereo fusion
problem, we build a large-scale dataset using the raw LiDAR
scans densified with the disparity map from an off-the-shelf
stereo matching algorithm and its correspondence confidence
on the raw KITTI benchmark [25]. In the experimental
results, we demonstrate that our proposed network outper-
forms existing stereo disparity estimation methods [12], [13],
LiDAR interpolation methods [33], and LiDAR and stereo
fusion methods [18] on various benchmarks such as the
KITTI [14] and our own YONSEI datasets.

II. RELATED WORK

For reliable disparity estimation under challenging outdoor
circumstances, a number of approaches have been proposed
to interpolate sparse depth information such as the LiDAR
points, establish dense disparity map from stereo images,
and estimate disparity from the LiDAR and stereo disparity
fusion as follows.

A. Depth Upsampling

3D LiDAR sensors are common in outdoor scene under-
standing approaches because of their high acquisition accu-
racy. However, since LiDAR data is sparse and incomplete, it
is not suitable for 3D reconstruction. To address this problem,
many approaches tried to upsample the sparse 3D points
and achieved reliable performance. These studies can be
divided into two major categories: non-guided upsampling
and guided upsampling. Early approaches of the non-guided
upsampling have leveraged repetitive structures to identify
similar patches across different scales [1], [2]. Recently,
CNN based methods [3] have outperformed conventional
upsampling techniques in terms of accuracy and efficiency.
Guided upsampling approaches use structure information
of high resolution color images based on the assumption
that color and depth are structurally similar [5]. One of
the famous approaches of this guided upsampling is guided
bilateral filtering [36]. Due to its efficiency and reliable

performance, there are many variants of this scheme [36],
[35]. More recently, color guided end-to-end model was
proposed [8], and also suppressed conventional algorithms.

B. Stereo Matching

In the fields of computer vision, a method for estimating
depth information from a stereo camera has been an another
main stream. In the early stage, the local method to perform
the patch unit comparison was mainly used [25], [10].
However, these local stereo matching methods often fail in
challenging scenarios, such as weakly-textured or saturated
regions. To solve these problems, recent researches [11]
concentrated on global methods by considering smoothness
constraints between neighboring pixels. Among these algo-
rithms, the pixel-level approaches based on the SGM [12]
are still one of the popular stereo matching algorithms that
can be applied to practical applications, spanning from self-
driving cars to autonomous surveillance, thanks to its compu-
tational efficiency, accuracy, and simplicity. Recently, CNN
models have been proposed for accurate depth estimation,
and MC-CNN [13] showed an excellent performance on the
KITTI benchmark [14] based on CNN based features in a
patch-level. However, their huge complexity are not suitable
for commercial systems.

C. LiDAR and Stereo Fusion

In the field of robotics, the data fusion technique between
3D range sensing and stereo matching have been proposed
to leveraging complementary properties of their disparity
maps [15]. Badino et al. [16] proposed efficient framework
with dynamic programming, and Gandhi et al. [17] tried to
fuse time-of-flight sensor and stereo camera. However, these
algorithms could not provide reliable depth information due
to challenging outdoor circumstances. Recently, Maddern
[18] proposed a probabilistic fusion approach for real-time
applications but their performance significantly decreased
in the area without LiDAR information. To alleviate this
problem, we introduce a CNN model for reliable 3D image
reconstruction. Note that while being widely used in many
computer vision and robotics applications, CNNs have never
been implemented before in the context of Lidar and stereo
fusion to the best of our knowledge.

III. METHOD

A. Problem Formulation and Overview

Let Il and Ir be a pair of stereo images. dL is sparse 3D
point clouds represented in the world coordinate, estimated
by active 3D scanner such as the LiDAR. Given 3D LiDAR
point clouds and stereo images, our objective is to estimate a
parametric model for high-precision depth estimation, which
fuses sparse 3D LiDAR points with dense stereo disparity. To
end this, we first recover the sparse disparity map DL from
sparse 3D LiDAR point clouds, and then pre-process DL

with a bicubic interpolation. Moreover, we leverage dense
disparity map DS estimated from stereo matching algorithm
on stereo images Il and Ir. We follow the approach in [12]
to compute DS .
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Fig. 2. Network configuration of our overall framework. Our proposed network takes LiDAR and stereo disparities as inputs and produces the high-precision
disparity as outputs.

(a) 3× 3 DC, k=2 (b) Expenential expension of receptive field

Fig. 3. Illustration of the dilate convolution (DC) [34]. The shaded blue
pixels show the receptive field of filters. Using the DC, we can accomplish
global information aggregation with a very compact parameterization.

By leveraging CNNs, we design two-stage cascade deep
architecture to learn a parametric model for the 3D LiDAR
and stereo depth fusion in a fully convolutional and end-to-
end manner, consisting of LiDAR-Stereo fusion module and
disparity refinement module. The disparity fusion network
is designed to extract the features from each disparity and
fuse them. Furthermore, the disparity refinement network is
formulated to estimate the residual of initial disparity map,
which yields an edge-preserved accurate disparity map. The
whole schematic of our network is illustrated in Fig. 2.

We have found three desirable criteria for our network:
• Accuracy: The network should guarantee high quality

3D perception by taking advantage of the comple-
mentary characteristics of LiDAR sensing and stereo
matching.

• Speed: The inference step should be fast, ideally achiev-
ing interactive rates for high-resolution images.

• Compactness: The network should be compact to be
deployed within mobile robots or autonomous vehicles.

In principle, any CNN architectures with large receptive
fields [26], [27] can be used for the first criterion. Most of
these architectures are, however, slow and not compact [27].
In the following, we will describe our network architecture
that strikes the best balance between other criteria, and
demonstrate outstanding performance of our architecture in
an extensive comparative study with existing methods.

B. Network Configuration

Our overall network consists of two cascade sub-networks,
including LiDAR-Stereo disparity fusion and disparity refine-
ment. Our architecture design is inspired by two intuitions
that: 1) the 3D LiDAR disparity and stereo disparity encode
different aspects of 3D geometric configuration, such that
information about one provides complementary cues that can
assist to reconstruct high-precision disparity information, and

2) the guidance of color information can be utilized to boost
the disparity estimation performance.

To estimate a high-precision disparity map efficiently, the
key design factor of our network is the incorporation of the
dilated convolution (DC) module, originally developed for
high-level vision tasks such as image classification and se-
mantic segmentation [27]. It has been widely acknowledged
that the large receptive field is essential for a neural network
[26]. Using a deeper architecture [27] or larger filters [28] is
an easy way to ensure large receptive field. However, both
schemes not only require more parameters but increase the
computational burden. Unlike these, the DC module enable
us to accomplish global information aggregation with a very
compact parameterization.

1) LiDAR-Stereo Fusion Network: The fusion module ΦF

consists of nine layers with three different blocks, i.e., 3× 3
DC, batch normalization (BN), and rectified linear units
(ReLU). The dilation factors k of convolutions are set to
1, 2, 4, 8, 16, 8, 4, 2, and 1, respectively. The 3×3 DC with
factor k is a sparse filter of size (2k+1)×(2k+1), i.e., only
9 entries of fixed positions can be non-zeros, exemplified
in Fig. 3. The number of feature maps in each layer is
set to 32. To encode complementary information from DL

and DS , the fusion module first takes them as inputs and
extracts intermediate features through first five layers. It is
desirable that those intermediate features describe distinctive
and complementary disparity cues of each channel. Thus, the
intermediate features are then combined through element-
wise summation at 5th layer, followed by last four layers to
produce the output of fusion module, denoted by DF :

DF = ΦF (DL, DS). (1)

2) Refinement Network: The refinement module ΦR has
the same specification as the fusion one, which consists of
nine layers with three different blocks of 3×3 DC/BN/ReLU.
Unlike the fusion module, the refinement module is designed
to enhance the quality of initial disparity DF with the help
of the color guidance. Furthermore, another difference of the
refinement module is that it does not directly compute the
high-quality disparity D∗, but the residual DR = D∗ −DF

to the input DF . After addition of DF to the residual, the
final disparity is given by:

D∗ = DF + ΦR(DF , Il). (2)

The computation of a residual in (2) is especially beneficial
for the refinement module, since it does not need to carry the



Fig. 4. Examples of our LiDAR and stereo fusion: (from top to down) Input color image, LiDAR disparity, the result of SGM [12], and proposed
algorithm.

input information through the whole network [29]. Guided
by the left color image Il, the refinement module estimates
high-frequency details only, omitted in DF .

Fig. 4 exemplifies the input disparity maps of the LiDAR
DL and stereo DS and the output disparity map D∗ of
the proposed network. As shown in second rows of Fig. 4,
LiDAR disparity map DL provides sparse depth information
while stereo disparity map DS is dense but inaccurate as
in third rows of Fig. 4. When stereo matching fails to
acquire depth information on a thin object, our algorithm
succeeds in acquiring accurate depth information by fusing
it with the sparse and accurate LiDAR disparity map. The
fattening phenomenon frequently observed in stereo disparity
maps [12] is also solved based on LiDAR information. By
simultaneously using the LiDAR and stereo disparity, our
proposed network can provide dense and accurate disparity
map that can be successfully used for high-precision 3D
reconstruction.

C. Generating Training Data

Training the proposed network requires access to a large-
scale dataset, consisting of 3D LiDAR points, stereo images,
and ground-truth disparity maps. However, there lacks a
benchmark with dense ground truth disparities, making su-
pervised learning of our CNN model less feasible. Although
training on indoor or synthetic datasets [32] is possible, it
remains an open question if the level of accuracy obtained by
such datasets is sufficient to challenging outdoor situations.
We therefore created two large-scale training dataset based
on the KITTI raw data [25] which comprises 42,382 stereo
frames with corresponding LiDAR point clouds.

1) Velodyne HDL-64E LiDAR: While the KITTI dataset
provides depth information from raw Velodyne scans, the
density of 3D point clouds in single frame is not sufficient
to learn the CNN model. Furthermore, significant manual
efforts is required to remove noise due to occlusions and
dynamic objects. To overcome these limitations, we first
follow [25] in manner that we accumulated 11 frames of

3D point clouds to increase the density of the generated
disparity maps DV . When there exist conflicting values, we
chose the disparity recorded closest to the color capture
time. Independently, the reference frame is interpolated by
using color-guided upsampling [33]. While the color-guided
upsampling [33] leads to texture-copying artifacts (Fig. 5.
(b)), it is robust to outliers caused by occlusions and dynamic
objects. Therefore, we use the interpolated reference frame to
determine outlier points and clean the accumulated disparity
DV by removing these outlier points. In Fig. 5. (d), it can
be seen that most outliers in DV can be removed with our
simple technique.

2) Point Grey Flea2 Stereo Camera: Despite the accu-
mulation, DV contains disparity values for less than 35%
of the pixels in left color image. Aside from this, the
disparity values are provided only at the bottom part of the
left color image (see Fig. 6 (a)) due to inherent occlusion
problems between 3D LiDAR scanner and stereo camera.
We tackle these issues by leveraging on a sophisticated stereo
algorithm and a confidence measure. Given a stereo pair Il
and Ir, we first generate disparity maps using the state-of-
the-art stereo algorithm [13], and then retain disparity values
having confidence higher than 0.95 using [30]. The resulting
disparity DS is shown in Fig. 6 (b), where DS is the larger
spread across the whole image. This enables our model to
look at portions of the scene seldom included in DV .

D. Training

In this section, we describe the training procedure in detail
to find optimal network parameters of our model given the
set of training data. Even though our architecture consists of
fully-convolutional layers, training this in a single procedure
from 3D LiDAR and stereo images as inputs to disparity as
outputs cannot guarantee an optimal global solution due to
the gradient vanishing problems. To alleviate this problem,
we employ separate loss functions for each sub-network, and
formulate training schedules of each sub-network.



(a) Accumulated LiDAR scans (b) Interpolated single LiDAR scan (c) Removed disparity points (d) Our final DV

Fig. 5. Outlier removal on the raw KITTI dataset [25]. We notice that most errors due to occlusions or reflecting surfaces can be removed with our
simple technique.

(a) DV from Velodyne LiDAR (b) DS from stereo pair (c) Support regions of DV (green) and DS (blue)

Fig. 6. Examples of our training data: (a) DV obtained by outlier removal and accumulation, (b) DS obtained by the stereo algorithm [13] and confidence
measure [30], and (c) support regions of DV (green) and DS (blue). Our generated disparity is more dense and is the larger spread across the whole
image, compared to the sparse ground-truth data available in the raw KITTI dataset [25].

1) Loss Function: As described in above, the loss function
of our network consists of two loss functions such that

L = LΦF
+ LΦR

. (3)

The loss has to balance both of DV and DS , and lead
synergy without over-fitting to a specific scenario. First of all,
we apply point-wise L1-loss directly to the fusion module:

LΦF
=

∑
p∈Ω(DV )

|DF (p)−DV (p)|1

+λ
∑

p∈Ω(DS)

|DF (p)−DS(p)|1,
(4)

where λ > 0 is a constant that balances the two terms. Higher
values of λ let DS contribute to the learning parameters
more. p denotes spatial locations and Ω is the set of spatial
locations including valid disparity values. During training,
most of the DV and DS have some missing values. We
address these by evaluating the loss only on valid points
p ∈ Ω.

Secondly, since the residual learning strategy is adopted,
we use the following loss function for the refinement module
such that

LΦR
=

∑
p∈Ω(DV )

|(DR(p) +DF (p))−DV (p)|1

+λ
∑

p∈Ω(DS)

|(DR(p) +DF (p))−DS(p)|1.

(5)
Note that the output of the refinement module is the residual.
We thus need to add DR back to DF for the final disparity.

2) Training schedule: Our model is trained from scratch
with Adam solver [31] using a momentum of 0.9 and
a weight decay of 0.0005. The whole training procedure
consists of two phases1. We sequentially train the fusion and
refinement modules for first 50 epochs each with a batch
size 32. While training the refinement module, we keep the
all parameters in the fusion one. The learning rate is started
from 0.001 and then fixed to 0.0001 when the training error

1It is possible to train our model in an end-to-end manner. However, in
practice we observed faster convergence and increased accuracy by two-
phase learning.

stops decreasing. It takes about 10 hour to train the whole
modules.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Experimental Settings

For our experiments, our network was implemented using
VLFeat MatConvNet toolbox [37] and trained on a NVIDIA
GeForce GTX TITAN X GPU. The inputs of each sub-
network were randomly cropped patches from the training
stereo images, the corresponding LiDAR and stereo disparity
maps. The input patch sizes were 64 × 64 × 3 for color
images and 64 × 64 × 1 for disparity maps. As any
other stereo matching algorithms can be applied in our
framework, we employed the SGM [12], considering the
trade-off between efficiency and accuracy. We also employed
MC-CNN [13] to build the ground-truth disparity maps with
the confidence estimation technique [30]. However they are
not restricted to specific choices of the algorithm.

In the following, we intensively analyze the performance
of our method through comparisons to the state-of-the-art
methods of disparity estimation from stereo images [13],
sparse disparity interpolation from sparse disparity images
[33], and LiDAR and stereo fusion [18] on the KITTI
benchmark [13] in Section IV-B. We also constructed our
own system for outdoor 3D scene reconstruction in Section
IV-C and evaluated our proposed method on those dataset.

B. Evaluation on KITTI Dataset

1) Dataset: The KITTI datasets were built by Velodyne
HDL-64E LiDAR scanner and 1242 × 375 resolution stereo
camera under outdoor environments. For an evaluation, we
used the training set of the KITTI stereo evaluation 2015
[14], which provides ground truth disparity maps. However,
since no raw LiDAR data was provided in this benchmark,
we extracted corresponding LiDAR point cloud data from the
raw KITTI dataset. Among 200 training images, 141 images
are included in the raw KITTI dataset. These images cover
28 scenes in the raw KITTI dataset, thus, we trained our
network on remaining 33 scenes contain 30,159 images. We



(a) Input color image (b) Input LiDAR dispariy (c) Ground truth

(d) FGI [33] (e) SGM [12] (f) MC-CNN [13]

(g) Probabilistic fusion [18] (h) Ours wo/ΦR (i) Ours

Fig. 7. Qualitative evaluation on KITTI dataset [13].

(a) SGM [12] (b) MC-CNN [13] (c) Ours

Fig. 8. Comparison with stereo matching algorithms on KITTI dataset [13]

Fig. 9. Examples of outdoor 3D scene reconstruction using proposed method in KITTI dataset [25].

made use of the raw data development kit [14] to project
LiDAR point clouds to the color image coordinate.

2) Disparity Estimation: Fig. 7 and Table I show the
qualitative and quantitative comparison results on training
set of the KITTI stereo 2015 evaluation [14], respectively.



TABLE I
COMPARISON OF QUANTITATIVE EVALUATION ON THE KITTI

BENCHMARK [14].

Methods Error Density.
Bicubic upsamp. 15.7 98.7
Guided upsamp. [36] 12.4 86.7
FGI [33] 11.2 99.1
SGM [12] 20.7 92.2
MC-CNN [13] 6.34 99.3
Probabilistic fusion [18] 5.91 99.6
Ours 4.84 99.8

TABLE II
COMPARISON OF COMPUTATION TIME ON THE KITTI BENCHMARK

Method SGM [18] MC-CNN [13] Prob. [18] Ours
Time (sec) 0.004 0.822 0.024 0.045

Specifically, our method was evaluated compared to the
state-of-the-art methods, such as SGM [12] and probabilistic
LiDAR-Stereo fusion method [18]. For quantitative evalua-
tion, a bad-pixel error rate was measured by using the KITTI
stereo development kit [14].

Even though the probabilistic LiDAR and stereo fusion
method [18] has provided reliable performances thanks to
its fusion approaches, it also has shown limited performance
due to its limited capacity for reliable fusion. Stereo disparity
estimation results only from stereo images, such as SGM [12]
and MC-CNN [13], also have shown unreliable performance
due to inherent limitations of stereo disparity estimation.
Unlike these methods, as in the quantitative results, our
proposed network achieved the error rate of 4.84%, which
is better than the best available competitor’s 5.91%. This is
more evident in the qualitative evaluation. As shown in Fig.
8, our method have accurately acquired disparity maps on
thin or complex objects, which are typical failure examples
in stereo disparity estimation. In addition, reliable depth
information is also obtained even in areas where the LiDAR
does cannot scan range information, such as outside the
viewing angle or high reflectance object.

3) 3D reconstruction: As shown in Fig. 9, to evaluate our
method in a practical manner, we reconstructed the 3D model
using estimated depth information. Since the accuracy of
disparity estimation is reduced with respect to the square of
distance, only significant areas of up to 3m were visualized.
As shown in the 3D reconstruction results, we can argue
that our method can successfully reconstruct 3D map even
in challenging outdoor environment.

C. Evaluation on YONSEI Dataset

1) Dataset: We further evaluated our network on our
multi-sensor data acquisition system, built for outdoor 3D
scene reconstruction. We took various scene data under
challenging outdoor environments. As shown in Fig. 10,
our recording platform is equipped with a ZED stereo
camera of 1280 × 720 resolution, and Velodyne HDL-32E
of 32 channels. In particular, the YONSEI dataset contains
32,549 LiDAR–stereo sequential frame sets. This dataset
was recorded at 10 Hz. In comparison to the experiments

(a) Our system (b) LiDAR and stereo data

Fig. 10. Illustration of our system. (a) Our system equipped with low-
channel LiDAR and stereo camera. (b) Example of LiDAR 3D point cloud
and stereo color image acquisition.

of the KITTI benchmark Section IV-B, our own YONSEI
dataset enables us to prove the stability and robustness of the
proposed network even with lower channel LiDAR sensor,
which is a recent trend in low-cost 3D LiDAR scanners.

2) 3D reconstruction: Despite of the lower number of
LiDAR channels in the YONSEI benchmark, our proposed
method has acquired accurate depth information and reliable
3D scene reconstruction results even under challenging out-
door conditions, as shown in Fig. 11. This proves that the
proposed method is reliable to acquire and reconstruct 3D ge-
ometry information in the challenging outdoor environment.

D. Computation complexity

Table II evaluated the computational complexity of our
methods compared to the state-of-the-art algorithms in han-
dling stereo images of size 1242 × 375 and 64 channel
LiDAR data. As shown in the results, our algorithm is
highly efficient than other algorithms, such as MC-CNN
[13], which proves the main contribution of this paper in
that accurate depth information can be obtained through an
efficient computation of our network.

V. CONCLUSION

We presented the CNN architecture for high-precision
depth estimation. Our network started from the fusion pro-
cess to encode the complementary characteristics of sparse
3D LiDAR and dense stereo depth in a boosting manner.
Our network has also employed the compact convolution
module that can be applied to various real time systems.
To the best of our knowledge, this network is the first CNN
model specifically designed for LiDAR and stereo fusion. We
also built large-scale datasets using the KITTI raw LiDAR
data, and augmented the raw LiDAR scans by adapting off-
the-shelf stereo algorithm and confidence measure. We also
collected data by our own multi-sensor acquisition system,
and demonstrated that our network outperforms the state-of-
the-art algorithms. In future work, our network can benefit
from the incorporation of stereo matching network.



Fig. 11. Examples of outdoor 3D scene reconstruction results using the proposed method in our database.
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