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ABSTRACT
Although convolutional neural network (CNN)-based stereo match-
ing methods have become increasingly popular thanks to their ro-
bustness, they primarily have been focused on the matching cost
computation. By leveraging CNNs, we present a novel method for
matching cost aggregation to boost the stereo matching performance.
Our insight is to learn the convolution kernel within CNN archi-
tecture for cost aggregation in a fully convolutional manner. Tai-
lored to cost aggregation problem, our method differs from hand-
crafted methods in terms of its convolutional aggregation through
optimally learned CNNs. First, the matching cost is aggregated with
cost volume unary network, and then optimized with explicit dis-
parity boundary, estimated through disparity boundary pairwise net-
work, within a global energy minimization. Experiments demon-
strate that our method outperforms conventional hand-crafted aggre-
gation methods

Index Terms— stereo matching, convolutional neural networks,
cost aggregation, global energy minimization

1. INTRODUCTION

Stereo matching has been one of the most important and fundamental
tasks for numerous computer vision applications, such as 3-D scene
reconstruction and intermediate view generation [1, 2].

Many stereo matching methods primarily aim to estimate a spa-
tially smooth but discontinuity preserved disparity map for a pair
of stereo images. To achieve this goal, many approaches utilize
a Markov Random Field (MRF)-based energy function [3, 4, 5],
where the disparities are determined in a unary term and the spa-
tially smooth and discontinuity preserved property is ensured in a
pairwise term. They reliably estimate the disparity by minimizing a
global energy function, but they have limitations on computational
complexity. Other approaches, called local approaches, estimate the
disparity by measuring correlation of color intensities within a local
window. They achieve this goal by applying an edge-aware filter-
ing (EAF) based cost aggregation [6, 7, 8, 9, 10]. Generally, they are
much faster to obtain disparity than energy-based global approaches.
However, they have challenges in defining reliable cost aggregation
function and selecting the optimal window size and shape.

Generally, cost aggregation step is to regularize matching costs
from neighboring pixels with an explicit kernel function [1]. Box-
filtering [1], which used an average filter within fixed support win-
dow, is a simple cost aggregation method. To provide more robust
aggregation performance, Yoon and Kweon [6] used bilateral weight
using color similarity and geometric proximity. They assumed that
there exists a high correlation between boundaries of color image
and disparity map. Several cost aggregation methods have adopted
robust EAF methods, such as guided filter [9, 11] and domain trans-
form [12, 10] to smooth the matching cost while preserving the dis-
parity boundaries efficiently. Instead of using the fixed window,

Fig. 1. Framework of our proposed cost aggregation. From an initial
raw cost volume in (a), we aggregate the matching costs through su-
cessive convolutions within CNNs to produce aggregated unary cost
volume in (b). Moreover, using estimated pairwise disparity bound-
aries in (c), we also aggregate the unary cost volume by minimizing
a global energy function to estimate final output cost volume in (d).

cross based aggregation method [8] used an adaptive window, and
aggregated matching cost within window only. The performances
of these methods largely depend on the hand-crafted kernel con-
structed using color image, and it is based on the assumption that
color and disparity boundaries are coherent. The inherent discrep-
ancy between them, however, may degrade their aggregation perfor-
mance. To overcome above limitation, few methods proposed to use
the disparity boundary and the color boundary together [13]. How-
ever, it was also based on the hand-crafted kernel, so its performance
was still limited.

Recently, various computer vision tasks have been reformulated
using convolutional neural networks (CNNs) due to their robustness,
such as image classification [14, 15], object detection [16, 17], and
image segmentation [18], and they show the magnificently improved
results. CNNs also have contributed to improve the stereo match-
ing performance by adjusting it to the matching cost computation
step. Some methods proposed to learn features via networks to clas-
sify two input patches matching or not, and computed the matching
costs using these features [19, 20, 21]. However, due to the inherent
challenges of stereo matching tasks, despite the CNN-based match-
ing costs, it is hard to estimate accurate disparities only using the
matching costs. In order to boost the performance, they applied con-
ventional hand-crafted aggregated methods such as cross-based cost
aggregation [8] and box-filtering [1], but they still show the limited
performance.

To overcome this limitation, we propose a novel cost aggrega-
tion method by leveraging CNNs, illustrated in Fig. 1. Our insight is
to learn the kernel function for the cost aggregation in a fully convo-
lutional manner. To this end, we use CNNs architecture to aggregate
the raw matching cost, where the parameters are learned directly



Fig. 2. The network architecture of our proposed cost aggregation.

from a ground-truth disparity map. To boost the aggregation per-
formance, we use additional CNNs to predict the tentative dispar-
ity boundary. The outputs of those networks are then combined by
minimizing a global energy function on each cost slice. Experimen-
tal results show that our proposed method outperforms conventional
cost aggregation methods on the Middlebury benchmark [22].

2. PROBLEM FORMULATION AND CHALLENGES

Given a rectified pair of stereo images I , I ′, stereo matching aims
at estimating disparity D for each pixel p = [px, py]

T . Match-
ing costs are first measured for pixel p across disparity candidates
d = {1, ...,K}, where K is the maximum disparity range, such that
C(p, d) = S(I(p), I ′(p − [d, 0]T )), where S(·, ·) is the cost func-
tion for measuring the dissimilarity, e.g., census transform [23] or
MC-CNN [19]. Note that matching costs are defined in 3-D space to
build 3-D cost volume.

To eliminate the effects of outliers and produce reliable dispar-
ity maps, raw matching costs are aggregated from the neighboring
pixels [1]. Based on the assumption of discontinuity consistency be-
tween color image and disparity map, most existing methods utilize
color image as a guidance to aggregate the matching costs [9, 10, 24].
The aggregated matching cost C′ is obtained as follows:

C′(p, d) =
∑

q∈Np

wI(p, q)C(q, d), (1)

where Np is a local aggregation window centered at pixel p, and
wI(p, q) is a normalized edge-aware weight within Np. By finding
a minimum of C′(p, d) across the disparity candidates d, the final
disparity D can be obtained by D(p) = argmind C

′(p, d).
Conventionally, most existing cost aggregation methods have

been focusing on how to optimally design the edge-aware weights in
a hand-crafted manner [1]. However, they have inherent limitations
to provide an optimal performance. Firstly, since they are formu-
lated with hand-crafted features, their performance depends on the
matching cost functions and the parameter settings such as trunca-
tion value or window size [25]. To obtain the optimal aggregation
performance, there is no alternative but to change the applied cost
function or tune the parameter settings. As a result, it is hard to de-
termine the optimal parameter settings that provide the consistently
reliable performance for all cost functions. Secondly, the edge-aware
weight derived from the only color image cannot define the disparity
boundaries optimally because of an inherent color-disparity discrep-
ancy [13]. Finally, 2-D cost aggregation window cannot consider a
correlation on matching costs across disparity search spaces, which
can contribute to boost the cost aggregation performance.

3. PROPOSED METHOD

3.1. Overview
By leveraging CNNs, our objective is to design a novel cost aggre-
gation method that reformulates the cost aggregation step in learning
framework. Our key algorithmic idea is that optimal kernels for cost
aggregation can be learned as convolution kernels of CNNs. To this
end, we formulate two sub-networks as shown in Fig. 2, unary and
pairwise networks. We employ the unary network, which input is an
initial cost volume. It aggregates the matching costs through succes-
sive convolution layers, and estimates the aggregated cost volume,
called unary cost volume. It inherently aggregates matching costs
not only within the local spatial window but also across the disparity
search spaces efficiently and effectively.

In the pairwise network, to boost the aggregation performance,
the tentative disparity boundaries are estimated using both color im-
age and initial disparity map. Using estimated disparity boundaries,
the unary cost volume is aggregated on each cost slice by minimizing
global energy function. Unlike conventional hand-crafted weights
[9, 10], our disparity boundaries provide reliable performances.

3.2. Cost Volume Unary Network
In the cost volume unary network, the raw matching costs are aggre-
gated with successive convolutions. In this section, we clarify the
concept of our cost aggregation approach by using a single convolu-
tion, and it is easily extended into multiple convolution cases. With
convolution property, an aggregated cost value at pixel p can be esti-
mated by summing the matching cost values on 3-D local neighbor-
hoodMp weighted by convolution kernels Wu as

C′(p, k) = Wk
u ∗ C(p, d)

=
∑

(q,d)∈Mp

Wk
u(q, d)C(p− q, d),

(2)

where (q, d) is defined as pixels within 3-D local aggregation neigh-
borhoodMp, and Wk

u is the kth convolution kernel.
Compared to conventional cost aggregation kernels [9, 10], con-

volutional kernels Wu in CNNs have two benefits. Firstly, they are
learned with a large number of ground-truth disparity maps, and thus
it provides highly robust performance. With the optimally learned
convolution kernels, our approach can provide consistently reliable
aggregation performance regardless of the cost functions and the pa-
rameter settings. Secondly, they aggregate the matching costs within
not only spatial local neighborhood but also disparity search spaces.
When determining the disparity among the matching costs for all
search ranges, the matching costs can provide helpful cues to es-
timate the confidence of disparity [26]. Thus, by aggregating the
matching costs within 3-D local neighborhood, the disparity can be
estimated more optimally and effectively.

The unary network has 3 convolutional layers, consisting of 5×5
sized 256, 256 and K convolutional kernels followed by batch nor-
malization and ReLU activation function. To preserve the spatial
resolution, any pooling operator is not used. Since the disparity can-
didates d = {1, ...,K} are defined in the discrete domain, we treat it
as a K-class classification problem, and each disparity can be treated
as one class. Inspired by fully convolutional networks [18], we train
our network to classify K-disparities using softmax loss in order to
predict pixel-wise disparity with ground-truth disparity.

3.3. Disparity Boundary Pairwise Network
Even though the cost volume unary network itself works well for
aggregating the matching costs, disparity boundary can boost the
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Fig. 3. Comparison of cost aggregations using different boundaries.
Top: (a) left color image and boundaries of (b) color image, (c) initial
disparity map, and (d) proposed method. Bottom: (a) ground-truth
disparity map and resultant disparity maps of (b),(c) and (d).

aggregation performance and localization ability around disparity
boundaries. To this end, we employ the disparity boundary pairwise
network to predict the tentative disparity boundary.

There are some boundary detection methods using CNNs [27,
28]. The color image is used as input of CNNs and they show out-
standing boundary detection performance than others using hand-
engineered method. However, even using CNNs, estimating the dis-
parity boundary is not easy task. The color image boundary can be
clearly defined, but there is inherent discrepancy between color and
disparity map. It is unsuitable to estimate the disparity boundary op-
timally just using the color image. Moreover, we attempt to use ini-
tial disparity map as input of CNNs. It is also not successful attempt
to estimate the exact disparity boundary because of its outliers.

We propose the joint usage of color image I and initial disparity
map D′(p) = argmind C(p, d) as inputs in pairwise network. It
can contribute the disparity boundary estimation in a synergic man-
ner combined the color image and the initial disparity map. Note that
although there were a few attempts [13, 29] to estimate the disparity
boundaries using these two inputs, their performances were still lim-
ited due to their hand-crafted formulation. Since these two inputs are
mutually beneficial, our pairwise network can predict highly robust
disparity boundaries such that B(p) = Wb ∗ {I(p), D′(p)}, where
Wb represents the parameters of pairwise network. As exemplified
in Fig. 3, while the color and the initial disparity boundary images
contain irrelevant boundaries on complex texture or outlier regions,
our disparity boundary provides a high consistency to the ground-
truth disparity map, and as a result, it boosts the disparity estimation
performance.

This network consists of 5 convolutional layers, and convolu-
tional filter size is 5× 5 followed by batch normalization and ReLU
activation functions. To fuse multiple inputs, we formulate this net-
work as three sub-sets of convolutional layers for initial disparity
feature extraction, color feature extraction, and fusion. For extract-
ing the features from two inputs, first two sets of convolutions have
64 convolutional kernels. Then, these two kind of features are con-
catenated. The fusion layer consists of three convolutional layers,
consisting of 128, 128 and 2 convolutional kernels. We formulate
the disparity boundary estimation as a binary classification problem
for boundary or non-boundary class. We define ground-truth dis-
parity boundary map obtained using Canny edge detection on the
ground-truth disparity map [30]. To achieve sharper boundaries, a
non-maximum suppression scheme is further applied.

(a) (b) (c) (d)

Fig. 4. Comparison of cost aggregations on initial cost volumes us-
ing (top) census transform [23] and (bottom) MC-CNN [19]: (a)
left color image and ground-truth disparity map, (b) initial disparity
maps, and refined disparity maps using (c) only unary cost volume
network and (d) both unary and pairwise network combined with
global energy function minimization.

3.4. Global Inference
To boost the performance, the unary cost volume C′ and the tenta-
tive disparity boundary map B should be integrated in a synergistic
manner. We fuse them using the global energy minimization defined
on each cost slice. We formulate the global energy function based on
weighted least squares (WLS) optimization framework. With omit-
ting k for simplicity, the aggregated matching cost C′′ can be ob-
tained by minimizing the following energy function:

E(C′′) =
∑

p
(C′′(p)− C′(p))2

+ λ
∑

p

∑
q∈N4

p

wB(p, q)(C
′′(p)− C′′(q))2,

(3)

where λ is a regularization parameter, N 4
p is a 4-neighborhood, and

wB is a weight defined with the disparity boundary map B as

wB(p, q) = exp(−‖B(p)−B(q)‖2/σB), (4)

where σB is a Gaussian bandwidth parameter. Our energy function
consists of unary and pairwise terms, balanced by the regularization
parameter. The unary term lets aggregated matching cost harmonize
well with the unary matching costs, and the pairwise term smooths
aggregated matching costs using the disparity boundary as the guid-
ance.

By minimizing the energy function on each matching cost slice,
the aggregated matching costs finally can be obtained such that

C′′ = (I+ λ(L−WB))
−1C′

(5)

where C′′, C′ and WB are matrix forms defined for all pixels p of
C′′, C′ and wB , respectively. L is a Laplacian matrix for WB . With
recent fast solver [31], such minimization can be very efficiently per-
formed. Since the matching costs are aggregated through all image
domain, the effects of outliers within local neighborhood can be def-
initely reduced. The final disparity map can be achieved such that
D(p) = argmind C

′′(p, d).

4. EXPERIMENTAL RESULTS

4.1. Experimental Settings
We implemented the proposed networks using VLFeat MatConvNet
toolbox [32]. The filter weights of each layer were initialized by
Gaussian distribution with zero mean and a standard deviation of
0.001. We normalized the inputs by subtracting the mean and divid-
ing by the standard deviation. We set the learning rate as 0.001.
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Fig. 5. Comparison of qualitative evaluations on the Middlebury benchmark [22] for cost aggregations on initial cost volumes using (top)
census transform [23] and (bottom) MC-CNN [19]: (a) left color images, (b) ground-truth disparity maps, (c) initial disparity maps, refined
disparity maps using (d) BF [1], (e) GF [11], (f) DT [12], (g) CBCA [8], and (h) our method.

To build the initial cost volume, census transform [23] and MC-
CNN [19] were utilized. For the census transform [23], we cropped
9×9 image patch to represent each image position as bit vector, sized
81. For the MC-CNN [19], we adapted the fast architecture. Espe-
cially, we used the cost volume without any post-processing tech-
niques refered in [19]. We directly used the code provided by the
authors.

With this initial cost volume, we evaluated our method com-
pared with conventional cost aggregation methods, such as box filter
(BF) [1], guided filter (GF) [11], domain transform (DT) [12], and
cross-based aggregation (CBCA) [8]. We utilized the built-in codes
in MATLAB for BF [1] and GF [11] and utilized the code from the
authors for DT [12]. We implemented the code for CBCA [8]. For a
fair comparison, no post-processing techniques were employed.

For quantitative evaluations, we evaluated the error rate by mea-
suring the percentage of bad matching pixels, whose the absolute
disparity error is greater than 2 pixel, in two subsets: the pixels in
the non-occluded regions (non-occ) and in the whole region (all).

4.2. Datasets
We used the image pairs of Middlebury stereo dataset [22], specifi-
cally half resolutions of the year 2005 and 2006, which have 6 and
21 rectified pairs of stereo image respectively with 700 × 550 res-
olution and 115 maximum disparity. We excluded 5 stereo pairs,
i.e. Lamp1, Lamp2, Midd1, Midd2 and Plastic because they contain
large textureless regions and could degenerate overall performance
of our learning. Among 22 images, we divided them into 16 pairs in
training set and 6 pairs in test set. Even though the training images
are only 16 pairs, our networks were formulated as the pixel-by-pixel
classification problem, so each pixel can be seen as one training can-
didate, i.e. over 5 million pairs are used for training our network,
which is similar with [19, 21].

4.3. Results
We first evaluated the component-wise analysis of two sub-networks
in our method, i.e., unary network and pairwise network, as in Fig. 4.
We then evaluated quantitative comparisons of conventional cost ag-
gregation methods in Fig. 5 and Table 1. As expected, conventional
hand-crafted aggregation methods such as BF [1], GF [11], DT [12],
and CBCA [8] show limited performances for both two cases using
census transform [23] and MC-CNN [19] for the initial matching
costs. Compared to these methods, our aggregation method using
only the unary cost volume network has already shown outstand-
ing performances thanks to learned optimal kernels through CNNs.
Moreover, minimizing our global energy function with the estimated
disparity boundaries further boosted the aggregation performance.

Table 1. Comparion of qualitative evaluations on the Middlebury
benchmark [22] of proposed method and conventional methods.

Methods
Census [23] MC-CNN [19]

non-occ all non-occ all

Initial 24.492 31.247 8.858 17.038

BF [1] 9.279 17.581 7.442 15.680
GF [11] 7.870 15.804 6.522 14.455
DT [12] 12.247 16.292 6.368 14.291
CBCA [8] 7.680 15.345 6.206 14.316

Ours-Unary 5.359 14.356 5.036 13.102
Ours 4.558 13.012 4.398 11.820

(a) (b) (c) (d)

Fig. 6. Visualization of refined disparity maps of our method through
post-processing as in [19] on initial cost volumes using (a),(b) census
transform [23] and (c),(d) MC-CNN [19].

Fig. 6 illustrates estimated disparity maps of our method through
post-processing similar to [19], including semiglobal matching [33],
interpolation, subpixel enhancement and refinement. It proves that
our method shows the reliable performance for the cost aggregation.

5. CONCLUSION

We presented an efficient cost aggregation method by leveraging
CNNs to obtain an accurate disparity map. Based on the insight that
optimal kernel function for cost aggregation can be learned as convo-
lutions in CNNs, we formulated two sub-networks, unary cost vol-
ume network and pairwise disparity boundary network, and trained
these network in a fully convolutional manner. To collaborate these
outputs efficiently, we employed the minimization of global energy
function on each cost slice. We evaluated our proposed method on
Middlebury benchmark [22], which demonstrates that our method
definitely outperforms other conventional cost aggregation methods.
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