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ABSTRACT

We present a novel fusion scheme between multiple intermediate
convolutional features within convolutional neurual network (CNN)
for dense correspondence estimation. In contrast to existing CNN-
based descriptors that utilize a single convolutional activation, our
approach jointly uses multiple intermediate features of CNN through
the attention weight that balances the contribution of each features.
We formulate the overall network as two sub-networks, correspon-
dence network and attention network. The correspondence network
is designed to provide multiple intermediate matching costs while
the attention network is to learn the optimal weight between them.
These two networks are learned in a joint manner to boost the cor-
respondence estimation performance. Experiments demonstrate that
our proposed method outperforms the state-of-the-art methods on
various correspondence estimation tasks including depth estimation,
optical flow, and semantic correspondence.

Index Terms— convolutional neural networks, attention mech-
anism, feature pyramid, dense correspondence

1. INTRODUCTION

Establishing dense correspondences across visually or semantically
similar images is a fundamental step for numerous computver vision
tasks such as structure-from-motion, visual SLAM, stereo matching,
optical flow, non-rigid 3D reconstruction, and scene flow [1, 2, 3, 4].

To estimate reliable correspondences, designing robust feature
descriptors or similarity functions to measure the matching evidence
is one of the most important issues. Conventionally, they were de-
signed to provide the invariance for photometric and geometric de-
formations between images in a hand-crafted manner [5]. Over the
past few years, recent developments in the design of local image
descriptors have been moved from carefully-engineered features to
convolutional neural network (CNN) based features, due to higher
level of robustness of CNNs [6] for visual deformantions. One of the
key-component of the high performance is their hierarchical convo-
lutional architecture to learn progressively complex visual features
from low-level filters to high-level concepts . For dense correspon-
dence estimation, a high level of invariance to visual deformations
could potentially be achieved with deeper convolutional networks or
large receptive fields, but would come at the cost of significantly re-
duced localization precision in matching details [7]. Such a trade-off
between appearance invariance and localization precision induces
inherent limitations on dense correspondence estimation.

On the other hand, in other computer vision applications, such as
semantic segmentation and detection [8, 9], many approaches have
exploited multiple intermediate features in CNN to overcome these
limitations. They mainly have employed two types of network struc-
tures, share-net and skip-net. The first type, share-net, builds re-
sized input images in multiple scales, passes each through a single

shared network, and computes the final prediction based on the fu-
sion of resulting multi-scale features [8]. Although they could in-
corporate more contextual information through a multi-scale feature
representation, they need an intensive computational time and mem-
ory for network training due to the shared structures in the feature
extraction network. Since a single shared network is used to gener-
ate multi-scale features, these methods inherently cannot handle the
tradeoff between appearance invariance and localization precision.
The second type, skip-net, exploits the multiple features from the in-
termediate layers of CNNs [10, 11, 12]. Based on the aggregation
of features from hierarchical convolutional layers, they could po-
tentially overcome the trade-off between appearance invariance and
localization precision. However, exisiting these fusion approaches
utilize a simple strategy to aggregate the matching costs estmated
from multiple features in a hand-crafted manner, such as average-
[13] or max-fusion [14], leading to a limited performance.

To address these issues, we propose a novel fusion scheme for
multiple intermediate features within a CNN architecture to provide
the appearance invariance and localization precision simultaneuosly.
Our key-insight is that the intermediate features of CNN can be com-
bined with a proper weight function that balances the contributions
between them to provide an optimal matching performance. We for-
mulate this compact intuition in a learning framework as an attention
mechanism based on CNNs that learns the soft weight to fuse inter-
mediate matching costs. We design a CNN architecture to estimate
the multiple matching costs between intermediate feature candidates
in the correspondence network and measure the optimal attention to
aggregate these matching costs with the soft weight. These two net-
works are jointly learned in a synergistic manner through an adaptive
correspondent classification loss layer, which possesses differentia-
bility enabling an end-to-end training. Experimental results demon-
strate that our network can be applied to various dense correspon-
dence estimations including depth estimation, optical flow, and se-
mantic correspondences, which proves our outstanding performance
compared to the state-of-the-art methods.

2. PROBLEM FORMULATION AND CHALLENGES

Let us define a source and target image as I and I ′. Formally, dense
correspondence estimation, such as depth estimation, optical flow,
and semantic correspondence, can be formulated as pixel-labeling
problems. For pixel i = [xi, yi]

T in a source image I , the goal of
the task is to establish a distinctive correspondence i′ among match-
ing cadidates within a target image I ′. To this end, it first defines a
similarity function S(Ii, I ′l) for all possible matching candidates l,
and then finds an index to produce a local minimum cost such that
i′ = argminlS(Ii, I ′l). The matching candidate set can be varied
according to problem formulations, e.g., 1-D search space for depth
estimation and 2-D search space for optical flow and semantic cor-
respondence.



To estimate reliable correspondences, the design of matching
cost function S(Ii, I ′l) is one of the most important issues to discrim-
inate positive and negative samples among the correspondence can-
didates efficiently and effectively. By leveraging CNNs, the match-
ing cost function can be formulated as the similarity between resul-
tant convolutional activations through feed-forward processes A =
F(I;Wc) and A′ = F(I ′;Wc) with the siamese network parame-
ters Wc such that

S(Ii, I ′l) = Φ(Ai, A
′
l), (1)

where Φ(·, ·) is the similarity function.
To overcome a trade-off between an invariance to deformation

and localization precision which conventional CNN-based methods
have encountered, several efforts [11, 8] have been proposed to fuse
the intermediate activations within CNNs, utilizing multiple inter-
mediate features from a single network. One attempt is to measure
the matching cost Su(Ii, I

′
l) by aggregating the multiple activations

with an uniform weight such that

Su(Ii, I
′
l) = 1/S

∑
s
Φ(As

i , A
′s
l ), (2)

where As = F(I;Ws
c) with intermediate convolutional parameters

Ws
c and S is the number of intermediate activation levels. However,

such a simple feature concatenation does not consider how much
each intermediate feature contributes on estimation, causing the er-
rorneous prediction from the less meaningful one to be propagated.

Another attempt is to measure the matching cost Sm(Ii, I
′
l) by

finding the maximal matching cost across scale s to select the most
appropriate feature such that

Sm(Ii, I
′
l) = max

s

{
Φ(As

i , A
′s
l )

}
. (3)

This scheme has been adopted in the hand-crafted descriptor fu-
sion techniques [15], but they are limited to select only one descrip-
tor among the intermediate features. Furthermore, although these
two types of fusion provide both robustness in variations and local-
ization precision to some extent, they are inherently bounded to esti-
mate an non-optimal similarity between the feature activations since
there is no cue to balance the contributions of each activation.

3. PROPOSED METHOD

3.1. Network Configuration
Unlike existing fusion schemes [11] that aggregate the matching cost
of intermediate convolutional activations in a hand-crafted manner,
we formulate the activation fusion in a learning framework to pre-
dict an optimal weight in a fully convolutional and end-to-end man-
ner. Our approach adaptively combines multiple intermediate con-
volutional features with an attention model, which balances the con-
tributions from the intermediate features for each pixel. To realize
this, the overall network consists of two sub-networks, namely cor-
respondence and attention network. The correspondence network is
to extract a convolutional feature to establish correspondences, and
the attention network is to balance the effects of the matching costs
computed from each intermediate convolutional activation.

3.1.1. Correspondence network

Similar to conventional features with CNNs [6], our correspondence
network consists of successive convolution layers. Moreover, sub-
sampling layers, i.e., max-pooling layers, are inserted between them
to provide a substantial robustness through the larger receptive fields
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Fig. 1. The architecture of our network that consists of correspon-
dence network and attention network. While the correspondence net-
work learns the siamese convolutional layers to compute the match-
ing costs across multiple scales, the attention network learns the at-
tention to fuse multiple intermediate activations with a soft weight.

of the deeper convolutions and high localization precisions through
the shallower convolutions simultanenously. These hierarchical ac-
tivations enable us to deal with the trade-off between the appearance
invariance and localization precision. From intermediate convolu-
tional activations As = F(I;Ws

c) from correspondence network,
the similarity function to compute the matching cost is simply de-
fined as an inner product such that

Φ(As
i , A

′s
l ) =< As

i , A
′s
l >, (4)

where < ·, · > denote the inner product operator. Balancing the
contribution of intermediate matching cost Φ(As

i , A
′s
l ) across scales

can be adjusted with an additional weight network, which will be
described in the following section.

Specifically, the correspondence network consists of 9 or 12 con-
volutional layers according to the datasets, followed by rectified lin-
ear units (ReLUs) and batch normalization (BN) [16] except for the
last convolutional layer. The total number of max-pooling layers in-
serted between convolutional layers is same to the intermediate fea-
ture levels S. For all convolution layers, the depth of kernel is 64
and the kernel size is 5 x 5.

3.1.2. Attention network

Formally, our matching cost can be formulated as a cost aggregation
with its corresponding attention such that

S(Ii, I ′l) =
∑

s
Bs

i · Φ(As
i , A

′s
l ), (5)

where Bs
i is the attention which balances the contribution of each in-

termediate feature across scale s at position i. While Bs
i defined in

a hand-crafted fusion, such as average- or max-fusion, cannot con-
sider the variations among intermediate features, our approach learns
the attention through CNNs to predict the optimal weight such that
Bs

i = F(I;Wb) with attention network parameters Wb.

To be specific, it consists of 3 or 5 convolutional layers depend-
ing on datasets, followed by ReLUs and BN. Furthermore, to keep
the spatial resolution of the outputs to original one, the attention net-
work does not contain the sub-sampling layers or stride scheme. Fi-
nally, the softmax layer is added to reduce the scale variation among
attentions across scales for each pixel.
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Fig. 2. Visualization of adaptive correspondent classification (ACC)
loss layer. It is defined as a cross-entropy loss through intermediate
convolutional activations with corresponding attentions. By aggre-
gating these intermediate matching costs, the final loss is estimated.
Note that the number of target feature candidates are set to K, which
can be varied according to problem settings.

3.2. ACC: Adaptive Correspondent Classification Loss
To learn the overall network, we propose an adaptive correspondent
classification (ACC) loss function. Since the correspondence estima-
tion can be formulated as pixel-labeling problems, the loss function
is also designed to train the network to predict the ground-truth prob-
ability at the corresponding position across matching candidates. In-
tuitively, we expect the ground-truth correspondent to have higher
score while others have lower score as negative samples. We formu-
late the ACC loss layer that minimizes a cross-entropy loss with the
softmax probability score function as an inner product.

For each pixel i and its possible correspondence candidates l,
the ACC loss can be defined such that

L(W) = − 1

2N

∑
i

∑
k
PGT(k; i) log(P (k; i)), (6)

where k is defined for all possible correspondence candidates. The
ground-truth probability PGT (k; i) is 1 if k is a correspondent pixel
and 0 otherwise. With the proposed matching cost S(Ii, I ′k) in (5),
P (k; i) is defined as a softmax probability such that

P (k; i) =
exp(S(Ii, I ′k))∑
l exp(S(Ii, I ′l))

, (7)

where l is defined for all possible disparities

3.2.1. Differentiablity of ACC loss

For end-to-end learning of the proposed network, the derivatives for
the loss function must be computable, so that gradients of the final
loss can be back-propagated to the shared correspondence network
and the attention network simultaneously.

By the chain rule, the derivative of the final loss L with respect
to As

i can be expressed as

∂L(W)/∂As
i =

∑
k
(PGT (k; i)− P (k; i))Bs

iA
′s
k , (8)

Similarly, ∂L(W)/∂A′s
k can be calculated.

Additionally, the derivative of the final loss L with respect to Bs
i

can be formulated as follows:

∂L(W)/∂Bs
i =

∑
k
(PGT (k; i)− P (k; i)) < As

i , A
′s
k >. (9)

Fig. 3. Comparison of qualitative evaluations for stereo matching on
the KITTI 2015 [17]: (from top to bottom, from left to right) left
image and estimated disparity maps using MC-CNN [18], Luo et al.
[19], and our method.

Table 1. Comparison of quantitative evaluations on the KITTI 2015
[17]. Average errors are measured with 2- and 3-pixel thresholds.

Methods
> 2 pixel > 3 pixel

Non-Occ All Non-Occ All

Census 49.13 50.35 32.53 45.82
MC-CNN [18] 18.47 20.04 14.96 16.59
Luo et al. [19] 9.96 11.67 7.23 8.97
Ours w.o/Att. 10.04 11.63 7.34 8.81
Ours 9.81 11.08 7.16 8.76

With PGT (k; i)) − P (k; i) term in the above derivatives, the
large loss gradients are back-propagated to the both networks when
the similarity score between source feature and ground-truth target
feature is lower than other candidates. Furthermore, in (8), the loss
gradients of As

i from matching candidate A′s
k is weighted by Bs

i ,
thus the contribution to network training of candidate A′s

k are ad-
justed according the Bs

i . In (9), the loss gradients of Bs
i are proposi-

tion to the similarity score < As
i , A

′s
k >, which decides the direction

and amount of back-propagation. If As
i and A′s

k is almost similar so
that the score is near to the probability of 1, the network is learned
to increase Bs

i or vice versa.

By formulating the ACC loss function for each intermediate fea-
ture and back-propagating the final loss gradients into their convolu-
tional layers, the proposed network learns the optimal weight during
network training without the tedious annotations of the ground truth
weight for each intermediate feature.

4. EXPERIMENTAL RESULTS

4.1. Experimental Settings
In experiments, the proposed network was implemented using the
Torch 7 toolbox [20]. Considering the trade-off between efficiency
and robustness, the number of intermediate feature levels S was set
to 3. To train our network, we used the ground-truth pixel-wise cor-
respondences from the dataset as negative samples and pixels over
all the candidates within the searching range as negative samples.
We employed the ADAM algorithm [21] and used a learning rate of
0.01. The learning rate is decreased by a factor of 5 every 40 epochs.

In the following, we comprehensively evaluated our proposed
network through comparisons to state-of-the-art methods with var-



Fig. 4. Comparison of qualitative evaluations for optical flow on the
MPI-Sintel benchmark [22]: (from top to bottom, from left to right)
estimated flow fields using FlowNet [24], DeepFlow [25], Ours, and
ground-truth flow fields.

Table 2. Comparison of quantitative evaluations on the MPI-Sintel
benchmark [22]. Note that s0-10 is the EPE for pixels with motions
between 0 and 10 pixels, and similarly s10-40 and s40+ are defined.

Methods EPE-all s0-10 s10-40 s40+

FlowNetS [24] 7.218 1.358 4.609 42.571
DeepFlow [25] 7.212 1.284 4.107 44.118
Ours w.o/Att. 7.208 1.291 4.045 42.021
Ours 7.182 1.275 3.963 41.687

ious dense correspondence estimation problems: disparity estima-
tion on KITTI 2015 benchmark [17], optical flow on MPI-SINTEL
benchmark [22], and semantic matching on Taniai benchmark [23].
For each task, we compared several state-of-the-art methods and
showed how our proposed network significantly improves the corre-
spondence performance. To additionally validate the attention mech-
anism, we evaluated our method without training on the attention
network where the features from correspondence network are fused
with an uniform weight (Ours w.o/Att.).

4.2. Depth Estimation on KITTI Benchmark [17]
To evaluate our method on stereo matching, our method was first
compared to state-of-the-art stereo matching methods such as MC-
CNN [18], Luo et al. [19] on the KITTI 2015 benchmark [17]. Note
that for a fair comparison we do not employ smoothing or post pro-
cessing schemes. To train the network, we randomly selected 160
image pairs as training set and use the remaining 40 image pairs
for validation purposes. Our network consist of 5×5 convolutions
with 2 max-pooling layers inserted after 3th and 6th convolutional
layer, which results a largest receptive field size of 85×85 pixels.
For quantitative evaluations, we used the bad-pixel error rates with
ground-truth disparity maps. Fig. 3 and Tab. 1 show comparisons
of qualitative and quantitative evaluations on KITTI 2015 bench-
mark [17]. As shown in results, our network outperforms previ-
ous CNNs based methods [18, 19] by a large margin on all crite-
ria. Interestingly, we observed that our approach does not suffer
from texture-less and repetitive regions while preventing from being
blurred thanks to the optimally learned attentions as exemplified in
Fig 4. The attention for s = 3 represents higher contribution than
others on average, since they have larger receptive fields.

4.3. Optical Flow on MPI-Sintel Benchmark [22]
We also evaluated our method in optical flow settings on the chal-
lenging MPI-Sintel benchmark [22], which consists of more than

Fig. 5. Comparison of qualitative evaluations for semantic corre-
spondence on the Taniai benchmark [23]. (from top to bottom, from
left to right) source image, target image, Ours w.o/Att., and Ours.

1200 pairs of training images and 1500 pairs of testing images. For
quantitative evaluations, we used end-point-error (EPE), which is
the average euclidean distance between the flow fields. Our net-
work consist of 12 layers of 3×3 and 5×5 convolutions with 4 max-
pooling layers in a receptive field size of 137×137 pixels for flow
estimation. For a fair comparison to existing optical flow methods,
we removed outliers through forward-backward consistency check
and refined the flow fields with a variational method similar to [26].
To be specific, we discarded inconsistent motion estimations with
the 3 pixel constraints through the correspondence consistency. We
interpolated or extrapolated the missing pixels with Epicflow [27].
Fig. 5 demonstrate comparison of our method with state-of-the-art
methods such as FlowNet [24] and Deepflow [25]. Clearly, on chal-
lenging regions, e.g., small objects with large motion, our method
estimated reliable flow fields with the help of balancing the trade-off
between intermediate features. Tab. 2 shows quantitative evalua-
tions. As in results, our proposed method outperforms other state-
of-the-art algorithms especially for large displacements.

4.4. Semantic Matching on Taniai Benchmark [23]
Lastly, we evaluated our fusion framework on the Taniai benchmark
[23] for semantic correspondence, which consists of 400 image pairs
divided into tree groups: FG3DCar, JODS, and PASCAL with the
ground-truth flow map on the foreground object. We formulated
our method with the ImageNet pretrained VGG-Net [28] from the
bottom conv1 to the conv3-4 layer for the initial parameters. Three
max-pooling layers are located cafter conv2-2,conv3-2, and conv3-4.
Fig. 5 demonstrates comparison of quantitative evaluations, which
prove the robustness of our method.

5. CONCLUSION

We presented the fusion scheme for multiple intermediate features
within CNN for dense correspondence estimation. To boost the
matching performance, our key-insight is to combine multiple in-
termediate features of CNN with an attention that balances the
contributions between them. We proposed the attention network that
can be jointly learned with the feature extraction network. Thanks
to its optimal combination between multiple intermediate features,
our method has shown high correspondence estimation performance
to provide the appearance invariance and localization precision
simultaneously in dense correspondence estimation.

6. ACKNOWLEDGMENTS

This work was supported by Institute for Information and commu-
nications Technology Promotion(IITP) grant funded by the Korea
government(MSIP)(No.2016-0-00197)



7. REFERENCES

[1] D. Scharstein and R. Szeliski, “A taxanomy and evaluation
of dense two-frame stereo correspondence algorithms,” IJCV,
vol. 47, no. 1-3, pp. 7–42, 2002.

[2] C. Liu, J. Yuen, and A Torralba, “Sift flow: Dense correspon-
dence across scenes and its applications,” IEEE Trans. PAMI,
vol. 33, no. 5, pp. 815–830, 2011.

[3] T. Brox and J. Malik, “Large displacement optical flow: De-
scriptor matching in variational motion estimation,” IEEE
Trans. PAMI, vol. 33, no. 3, pp. 500–513, 2011.

[4] P. Sturm and B. Triggs, “A factorization based algorithm for
multi-image projective structure and motion,” In ECCV, 1996.

[5] D.G. Lowe, “Distinctive image features from scale-invariant
keypoints,” IJCV, vol. 60, no. 2, pp. 91–110, 2004.

[6] K. Alex, S. Ilya, and E. H. Geoffrey, “Imagenet classification
with deep convolutional neural networks,” In Proc. of NIPS,
2012.

[7] J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid,
“Deepmatching: Hierarchical deformable dense matching,”
IJCV, vol. 120, no. 3, pp. 300–323, 2016.

[8] L.C. Chen, Y.I. Yang, J. Wang, W. Xu, and A.L. Yuille, “At-
tention to scale: Scale-aware semantic image segmentation,”
In CVPR, pp. 3640–3649, 2016.

[9] Dollar P. Lin, T.Y. and R. Girshick, “Feature pyramid networks
for object detection,” arXiv:1612.03144, 2016.

[10] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional
networks for semantic segmentation,” In CVPR, pp. 3431–
3440, 2015.

[11] B. Hariharan, P. Arbelaez, R. Girshick, and J. Malik, “Hy-
percolumns for object segmentation and fine-grained localiza-
tion,” In CVPR, pp. 447–456, 2015.

[12] S. Kim, D. MIn, B. Ham, S. Jeon, S. Lin, and K. Sohn, “Fcss:
Fully convolutional self-similarity for dense semantic corre-
spondence,” arXiv:1702.00926, 2017.

[13] D. Ciresan, U. Meier, and J. schmidhuber, “Multi-column deep
neural networks for image classification,” in CVPR, pp. 3642–
3649, 2012.

[14] P.F. Felzenszwalb, R.B. Girshick, D. McAllester, and D. Ra-
manan, “Object detection with discriminatively trained part-
based models,” IEEE Trans. PAMI, vol. 32, no. 9, pp. 1627–
1645, 2010.

[15] K.J. Hsu, Y.Y Lin, and Chuang.Y.Y., “Robust image alignment
with multiple feature descriptors and matching-guided neigh-
borhoods,” In CVPR, pp. 1921–1930, 2015.

[16] S. Loffe and C. Szegedy, “Batch normalization: Accelerat-
ing deep network training by reducing internal covariate shift,”
arXiv:1502.03167, 2015.

[17] M. Menze and A. Geiger, “Object scene flow for autonomous
vehicles,” In CVPR, pp. 3061–3070, 2015.

[18] J. Zbontar and Y. LeCun, “Stereo matching by training a con-
volutional neural network to compare image patches,” JMLR,
, no. 17, pp. 1–32, 2016.

[19] W. Luo, A.G. Schwing, and R. Urtasun, “Efficient deep learn-
ing for stereo matching,” In CVPR, pp. 5695–5703, 2016.

[20] R. Collobert, K. Kavukcuoglu, and C. Farabet, “Torch7: A
matlab-like environment for machine learning,” In NIPS Work-
shop, 2011.

[21] D. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” arXiv: 1412.6980, 2014.

[22] D.J. Butler, J. Wolf, G.B. Stanley, and M.J. Black, “A natural-
istic open source movie for optical flow evaluation,” In ECCV,
pp. 611–625, 2012.

[23] T. Taniai, S.N. Sinha, and Y. Sato, “Joint recovery of dense
correspondence and cosegmentation in two images,” in CVPR,
pp. 4246–4255, 2016.

[24] A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas,
V. Golkov, P. Smagt, D. Cremers, and T. Brox, “Flownet:
Learning optical flow with convolutional networks,” In ICCV,
pp. 2758–2766, 2015.

[25] P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid,
“Deepflow: Large displacement optical flow with deep match-
ing,” In ICCV, pp. 1385–1392, 2015.

[26] M. Bai, W. Luo, K. Kundu, and R. Urtasan, “Exploiting se-
mantic information and deep matching for optical flow,” In
ICCV, 2015.

[27] J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid,
“Epicflow: Edge-preserving interpolation of correspondences
for optical flow,” In CVPR, pp. 1164–1172, 2015.

[28] K. Simonyan and A. Zisserman, “Very deep convolutional net-
works for large-scale image recognition,” arXiv:1409.1556,
2014.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


