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Abstract— We present a deep architecture that estimates a
stereo confidence, which is essential for improving the accuracy of
stereo matching algorithms. In contrast to existing methods based
on deep convolutional neural networks (CNNs) that rely on only
one of the matching cost volume or estimated disparity map,
our network estimates the stereo confidence by using the two
heterogeneous inputs simultaneously. Specifically, the matching
probability volume is first computed from the matching cost
volume with residual networks and a pooling module in a manner
that yields greater robustness. The confidence is then estimated
through a unified deep network that combines confidence features
extracted both from the matching probability volume and its
corresponding disparity. In addition, our method extracts the
confidence features of the disparity map by applying multiple
convolutional filters with varying sizes to an input disparity map.
To learn our networks in a semi-supervised manner, we propose
a novel loss function that use confident points to compute the
image reconstruction loss. To validate the effectiveness of our
method in a disparity post-processing step, we employ three post-
processing approaches; cost modulation, ground control points-
based propagation, and aggregated ground control points-based
propagation. Experimental results demonstrate that our method
outperforms state-of-the-art confidence estimation methods on
various benchmarks.

Index Terms— Stereo confidence, confidence learning,
matching probability volume, confidence estimation network.

I. INTRODUCTION

FOR decades, the stereo matching has been one of the
fundamental and essential topics in the fields of computer

vision. It aims to estimate accurate corresponding points for
each pixel between a pair of two images taken under different
viewpoints of the same scene. Though numerous methods
have been proposed for this task, it still remains an unsolved
problem due to several factors including textureless or repeated
pattern regions, and occlusions [1]–[3]. Besides, photometric
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deformations incurred by illumination and/or camera varia-
tions pose additional challenges [4]–[6].

In general, most of the stereo matching methods consist
of the following pipelines [7]: 1) matching cost computation,
2) matching cost aggregation, 3) disparity regularization, and
4) post-processing. Concretely, the similarity between patches
from left and right images is first measured with various cost
measures [8], [9] and the matching cost volume is then con-
structed with these matching costs across disparity candidates.
Various methods have attempted to improve the matching
accuracy at each step. To robustly compute the matching
cost, several approaches were proposed by using robust
cost measures [6], [10], [11] or learning-based approaches
[9], [12]. Moreover, the matching costs are aggregated to
alleviate matching ambiguities by considering local neigh-
bors [13]–[15]. Powerful regularization techniques [8], [16]
can also be applied by incorporating prior constraints into
an objective function. These approaches help to yield reliable
matching results to some extent, but they do not fully address
the inherent problems of stereo matching.

To further improve the matching accuracy, most approaches
involve the post-processing step. A set of unreliable pix-
els is first extracted using confidence measures, and then
interpolated using reliable estimates at neighboring pixels
[8], [13], [17]–[20]. Conventionally, mismatched pixels were
detected using simple confidence measures such as a left-right
consistency or peak ratio [21], [22]. Recently, learning-based
approaches have been populary proposed to boost the per-
formance of confidence estimation [20], [23]–[25]. Formally,
a set of confidence features extracted from stereo matching
results of the training data is used to train the confidence
classifier [20], [23], [26]. In a test phase, the trained classifier
is used to estimate the confidence of each pixel. These methods
have shown distinct strengths in comparison to existing non-
learning based approaches [21]. However, they still rely on
hand-crafted confidence features for training the confidence
classifier, and thus they often fail to detect mismatched pixels
under challenging conditions [27].

More recently, convolutional neural networks (CNNs)-based
approaches have been proposed to robustly extract confidence
features from a disparity map and estimate the confidence
[28], [29]. Although they have shown improved performance
than the existing methods based on handcrafted features [20],
[23], [24], [30], they rely on rather limited information in
learning the confidence features. According to [31], there exist
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Fig. 1. Illustration of the proposed network, consisting of two sub-networks
including matching probability volume construction network and confidence
estimation network.

many informative features within the cost volume. It was also
shown in many literatures [20], [23], [24], [30] that the hand-
crafted features extracted from the cost volume can boost
the performance of the confidence estimation. In contrast,
most of the existing CNN-based approaches leverage only
single or stereo disparity maps for confidence estimation
[28], [29], which may limit the performance in challeng-
ing conditions. Although several methods [28], [32] have
attempted to use the cost volume in the confidence estimation
within deep networks, the direct usage of the raw cost volume
cannot boost the confidence estimation performance. Unlike
disparity information, the raw matching cost volume has scale
variation problem that the absolute value of the matching
cost volume varies depending on stereo matching approaches
used and its distribution is non-discriminative for reliable and
unreliable pixels. This prohibits the direct usage of the cost
volume in the confidence estimation networks.

In this paper, we propose a novel deep architecture that
simultaneously uses a matching cost volume and disparity
map as inputs to estimate the confidence as in Fig. 1. Firstly,
we propose a matching probability construction network
(MPCN) that extracts the matching probabilities from the cost
volume to improve a discriminative power and solve the scale
variation problem of the cost volume. Secondly, we propose
a confidence estimation network (CEN) to estimate the reli-
able confidence by simultaneously leveraging the matching
probabilities and their corresponding disparity maps, where
multiple convolutional filters with varying sizes are used to
extract multi-scale disparity features. These two sub-networks
are learned in a joint and boosting manner, enabling us to
estimate reliable disparity and confidence maps in a unified
framework.

To learn our networks in a supervised manner, vast amount
of stereo image pairs and corresponding dense disparity (or
depth) maps are required. However, in outdoor scenes, 3D
laser scanners often fail to capture depth information of very
distant objects. For instance, no depth information is provided
at the upper parts (e.g. sky) of color images in the KITTI
benchmark [33], making supervised learning of CNNs infea-
sible for this task. Alternatively, dense ground truth disparity
maps would be generated through synthetic rendering, as in
the MPI sintel [34] and DispNet [35], but they cause domain
adaptation problem inherently when directly used to estimate
disparity maps for real outdoor stereo images. To address the
problem of limited training samples for the stereo matching,
we propose a semi-supervised learning scheme in which the
pixels classified as confident through the estimated confidence
map are used to measure the image reconstruction loss [36].

To verify the proposed confidence estimation method, we
employ three post-processing methods such as cost mod-
ulation [24], ground control points (GCPs)-based propa-
gation [37], and aggregated GCPs-based propagation [38].
Experimental results show that the proposed method out-
performs conventional handcrafted feature-based methods
and CNN-based methods on various benchmarks, including
Middlebury 2006 [39], Middlebury 2014 [40], and KITTI
2015 [33].

This manuscript extends the conference version of this
work [41]. It newly adds (1) additional convolutional net-
works to refine the raw matching cost volume to boost confi-
dence estimation performance; (2) a semi-supervised learning
scheme to learn the proposed networks only with the limited
sparse ground truth disparity maps; (3) multi-scale disparity
feature extraction networks to extract confidence features from
different scale of disparities; and (4) an extensive comparative
study with the state-of-the-art confidence estimation algo-
rithms using various datasets.

II. RELATED WORKS

A. Hand-Crafted Approaches
Numerous approaches have been proposed for stereo con-

fidence estimation based on various handcrafted confidence
measures [3], [17], [18]. A comprehensive review provided
in [31] concluded that using single confidence feature would
not yield good performance in confidence estimation. In order
to overcome such limitations and improve the prediction accu-
racy, there have been various attempts to combine confidence
features and train a simple shallow classifier, e.g. random
decision forest [20], [23]–[25]. They define the confidence
feature, which consists of various stereo confidence cues from
the estimated disparity map and (optionally) cost volume.
Haeusler et al. [23] combined confidence features consisting
of left-right consistency, image gradient, and disparity map
variance for training the classifier. Similar approach was
also proposed in [20]. Though they improved the prediction
accuracy over single confidence based approaches [3], [17],
the performance is still limited since the combination of
confidence features is not optimal.

To select the set of (sub-)optimal confidence features
among multiple confidence features, Park and Yoon [24]
proposed to utilize the regression forest that computes the
importance of confidence features and to train the regres-
sion forest classifier using the selected confidence features.
Poggi and Mattoccia [25] employed the set of confidence
features from only disparity map that can be computed in O(1)
complexity without losing the confidence estimation perfor-
mance. While the above methods detect confident pixels at the
pixel-level, Kim et al. [27] leverages a spatial context to esti-
mate confidence at the superpixel-level by concatenating pixel-
and superpixel-level confidence features. However, all of these
methods use handcrafted confidence features that might not be
optimal to detect unconfident pixels on challenging scenes.

B. CNN-Based Approaches

More recently, several approaches have attempted to esti-
mate the stereo confidence using deep CNNs [28], [29], [42],
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Fig. 2. Illustration of the matching probability construction network.

demonstrating much improved performance over existing
handcrafted approaches. In [29], they proposed a novel confi-
dence estimation network that uses a left disparity map only
as an input. Seki and Pollefeys [28] proposed to uses both
left and right disparity maps in deep networks for improving
the confidence prediction accuracy. The confidence refinement
network [42] was also developed, which can improve the
accuracy of the measured confidence map by leveraging local
consistency of confidence map. Shaked and Wolf [32] esti-
mated both disparity and confidence maps from cost volume
simultaneously, but they do not use the estimated disparity
map as an input of the confidence estimation network.

Tosi et al. [43] proposed a novel self-supervised strat-
egy, which generates training labels by leveraging a pool
of appropriately combined conventional confidence measures.
Poggi et al. [44] performed a quantitative evaluation of con-
fidence measures that use machine learning algorithms.

Although CNN-based approaches demonstrated the
improved performance compared to handcrafted features-
based methods, they use disparity or cost volume only, and
no attempt has been made to use both disparity and cost
volume. It was shown in existing handcrafted approaches [20],
[23], [24], [27] that using the confidence features extracted
from the cost volume as well as the disparity improves the
confidence prediction accuracy.

III. PROPOSED METHOD

A. Problem Formulation and Model

Let us define a pair of stereo images {I l , I r }. The objective
of stereo matching is to estimate a disparity Di for each pixel
i = [ix, iy]T between input stereo images. Since most of stereo
matching methods have an estimation error, our approach aims
at estimating a confidence of Di within a learning framework,
and refining Di using the confidence map.

For this task, we propose a novel approach that estimates a
confidence map using the matching cost volume and disparity
map simultaneously in deep CNNs. The overall network con-
sists of two sub-networks, matching probability construction
network (MPCN) and confidence estimation network (CEN).
We first estimate a matching cost volume Ci,d using existing
matching cost functions across a set of disparity candidates
d ∈ {0, 1, . . . , dmax} defined for a maximum disparity dmax.
Since the direct use of cost volume Ci,d to detect the con-
fidence has trouble in solving the scale variation problem
and provides a limited discriminative power, we generate the
matching probability volume Pi,d by refining the initial cost
volume Ci,d in the matching probability construction network
as in Fig. 2. In the confidence estimation network as in Fig. 4,

Fig. 3. Effectiveness of top-K matching probability volume: (a) raw matching
cost of MC-CNN [9] for the KITTI 2015 dataset [33], (b) matching probability
using Eq. (1), and (c) descending order of top-K matching probabilities using
Eq. (2) (K = 5). First and second row represent reliable pixels, and third and
fourth row represent unreliable pixels.

our method then learns the relationship between the matching
probability volume Pi,d with its associated disparity Di and
a ground truth confidence Q∗

i , computed by thresholding an
absolute difference between the estimated disparity Di and
ground truth disparity D∗

i . In this network, the confidence
features are extracted using both Pi and Di . Additionally,
motivated by methods using handcrafted confidence features
[24], [25], we employ a multi-scale CNN architecture that
encodes confidence features from disparity maps at multiple
scales. Furthermore, since sparse and insufficient ground truth
disparity maps are available in most stereo databases [33],
a semi-supervised loss is proposed to learn the network, where
we use confident points to compute the image recontruction
loss.

B. Confidence Estimation Using Cost Volume and Disparity
1) Matching Probability Construction Network: Although

the matching cost volume Ci,d includes useful information
to find reliably matched pixels, the raw matching cost vol-
ume itself has a limited discriminative power and the scale
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variation problem, thus direct use of the cost volume provides
limited performance for estimating confidences as described
in [28] and [44]. To overcome these limitations, we formulate
convolutional layers to aggregate and refine the raw matching
costs with learned kernels, followed by the normalization layer.
After passing the raw matching cost volume through a series
of convolutional layers to construct the refined cost volume
such that C ′ = F(C; W c) with network parameters W c , we
generate the matching probability volume P , which normalizes
the refined matching cost volume C ′ such that

Pi,d = exp(−C ′
i,d/σ)

∑
u exp(−C ′

i,u/σ)
, (1)

where u ∈ {1, . . . , dmax} and σ is a parameter to adjust a
flatness of the matching cost volume. Compared to a softmax
module, this normalization scheme can adjust the flatness of
matching probability volume according to σ , improving the
discriminative power as exemplified in Fig. 3. Note that σ is
defined according to the relative scale of the matching cost.
As exemplified in Fig. 3(a), the absolute scale of raw matching
cost Ci,d varies for each pixel, and thus they provide a low
discriminative power to be used for estimating reliable pixels.
This problem can be alleviated in the matching probability
volume Pi,d as shown in Fig. 3(b).

Furthermore, we can also find that the majority of matching
probabilities Pi,d has a value close to 0, which does not convey
useful cues as shown in Fig. 3(b). Such redundant parts rather
distract the performance of confidence estimation, which will
be described in the following section. Thus we also propose
a top-K pooling layer, where the matching probability Pi of
Eq. (1) is projected into a fixed length input as follows:

Pi,k = maxk
d Pi,d , (2)

where maxk(·) is the k-th maximal value for k = {1, . . . , K }.
As shown in Fig. 3(c), top-K matching probabilities have a
consistent shape by descending ordering according to reli-
able or unreliable pixels. Matching outliers in the unreliable
pixels lead to rather scattered (or even uniform) distribution of
matching probability, while reliable pixels yield concentrated
distribution of probability, thus providing a highly discrimi-
native power for confidence estimation. Note that this layer
has no trainable parameters, but is differentiable, and thus it
can be inserted to any networks as an intermediate layer. In
Fig. 3(c), the top-K matching probabilities demonstrate a high
discriminative power to classify reliable pixels.

Moreover, since our confidence estimator predicts the confi-
dence using the cost volume and disparity map simultaneously,
we additionally compute its associated disparity map. It can
be realized through a winner-take-all (WTA) strategy, but it is
not differentiable. To overcome this, we use the soft argmin
layer as in [45] as follows:

Di =
∑

d
d × Pi,d . (3)

This operation is fully differentiable and allows us to regress
the disparity during training. Note that since the matching
probability construction network is learned with the estimated
confidence simultaneously, which will be described in the fol-
lowing section, the quality of the disparity map D is gradually

Fig. 4. Illustration of the confidence estimation network.

improved during training. It is used to learn the confidence
estimation networks, which enables us to estimate reliable
disparity and confidence maps, different from conventional
methods that use fixed disparity maps to learn the confidence
estimation networks [25], [28], [29], [32].

2) Confidence Estimation Network: At the heart of our
strategy to boost the performance of confidence estimation
is the fusion scheme of two inputs, consisting of the top-K
matching probability volume P and its corresponding disparity
map D. Due to heterogeneous attributes of them, a direct
concatenation of two raw inputs does not provide an optimal
performance. Alternatively, we can simply fuse intermediate
outputs obtained from sub-networks for two raw inputs, but
the prediction output cannot be fused optimally since the
contribution of each input might vary for each pixel.

To overcome these limitations, we build the deep architec-
ture inspired by [46], including a fusion network to estimate
the confidence as well as two sub-networks to extract con-
fidence features. Moreover, we extract multi-scale disparity
features to improve the discriminative power of confidence
features by taking different size of convolutional filters as
in [24] and [25]. In order to extract disparity features from
different scales, we set different size of convolutional filters
for each scale level l ∈ {1, 2, . . . , L}, where L is the number
of scales. Each disparity feature extractor network is defined
such that Ad

l = F(D; W d
l ) while matching probability feature

extractor network is defined such that Ac = F(P; W c), where
W d

l and W c are network parameters. After all intermediate
activations, Ac and Ad

l , are concatenated, the confidence
map is finally regressed as the output of fusion network
Q = F(Ac, Ad

1 , . . . , Ad
L; W f ), where W f is a fusion network

parameter and the sigmoid function is used for the last
activation to train the binary classifier. Fig. 5 represents the
effectiveness of the proposed fusion strategy.
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TABLE I

OUR NETWORK ARCHITECTURE OF MATCHING PROBABILITY CONSTRUC-
TION NETWORK, WHERE ‘D.F. I/O’ DENOTES DOWNSCALING

FACTOR OF INPUT AND OUTPUT FOR EACH LAYER

RELATIVE TO THE INPUT IMAGE

C. Network Configuration

The deep network for the matching probability construc-
tion is illustrated in Fig. 2, and the configuration of this
network is summarized in Table I. The matching probability
construction network consists of a cost volume refinement
network, normalization layer, and top-K pooling layer. To
refine the raw matching cost volume, we design the encoder-
decoder network with skip layers, consisting of sequential
convolutional layers followed by batch normalization (BN) and
rectified linear units (ReLU). We apply 2 × 2 max-pooling
operators sequentially, resulting in a total down-sampling
factor of 4. In the decoding procedure, we upsample the
intermediate features using bilinear deconvolutional filters, and
concatenate the upsampled features using a skip layer. Instead
of directly predicting the refined cost volume, we predict a
residual cost volume by adding a skip connection from the raw
cost volume to the output. As the residual learning alleviates
the need for restoring specific cost volume contents, our cost
volume refinement network provides significant improvement
in refining the raw cost volume.

The deep networks for the confidence estimation are shown
in Fig. 4, and the configuration of this network is summarized
in Table II. For the confidence estimation network, we leverage
3 × 3 convolutional filters sequentially, followed by BN and
ReLU. In this network, the pooling operator is not used to
preserve the spatial resolution. To extract multi-scale disparity
features with different sizes of receptive fields, we vary the
convolutional filter size relative to scale level l ∈ {1, 2, . . . , L}
as explained in Table II. Here, we set L as 4. We also apply
Sigmoid operator on the output of the last activation since the
output confidence value is within [0, 1].

D. Loss Function

1) Matching Probability Construction Network Loss: A
major challenge of CNN-based stereo matching methods is the
lack of dense ground truth disparity maps especially in outdoor

settings [47]. To overcome this limitation, we propose a semi-
supervised learning scheme in a manner that highly confident
pixels in the disparity map are used together with sparse
ground truth disparities to learn the matching probability
construction network. Specifically, with the sparse ground truth
disparity D∗ and the estimated disparity D, we define a novel
loss function for the MPCN, consisting of a supervised term
Lsup and an unsupervised term Lunsup with hyper-parameter
λ that weighs the contribution of the latter:

LM PC N = Lsup + λLunsup. (4)

The supervised term Lsup is formulated to directly regress the
disparity D with respect to ground truth disparity D∗ with L1
norm objective function such that

Lsup =
∑

i
mi

∣
∣Di − D∗

i

∣
∣, (5)

where mi is a mask that represents the existence of ground
truth disparity map. It should be noted that this supervised loss
Lsup can provide reliable performance when the network is
learned with a sufficient amounts of training data. To overcome
this, we additionally propose an unsupervised term Lunsup that
leverages the estimated confidence as follows:

Lunsup =
∑

i
G(Qi ; ρ)

∣
∣
∣I l

i−Di
− I r

i

∣
∣
∣, (6)

where G(Qi ; ρ) is a truncation function which has the value 1
when the estimated confidence Qi is higher than a threshold
parameter ρ, and 0 otherwise. As ρ decreases, the density
of regions used to compute the loss

∣
∣
∣I l

i−Di
− I r

i

∣
∣
∣ increases,

but it is more likely that the convergence of networks is
disturbed due to unreliable regions used in the loss function.
Contrarily, as ρ increases, the density of regions used to
compute the loss decreases, slowing down the convergence.
Here, we set ρ in which the density of confident regions used
in the loss computation becomes 75% on average. This loss
function is similar to the image recostruction loss as in [36]
that minimizes the difference between right color image I r

i
and warped left color I l

i−Di
. One difference is that our loss

function only considers highly confident regions to learn the
disparity. To achieve a convergent optimization and avoid the
bias problem, we first learn the confidence map with only the
supervised loss Lsup until the pre-defined number of epoch,
and then fine-tuned them with the semi-supervised loss (i.e.,
Lsup and Lunsup). After learning the network, we put the semi-
supervised loss in Eq. (6) together with Eq. (5) with reliable
confidence. With these loss functions, our method reliably
learns the matching probability construction network with the
datasets having only sparse ground truth disparity map. Fig. 6
shows the importance of a semi-supervised loss function for
learning matching probability construction network.

2) Confidence Estimation Network Loss: Compared to the
matching probability construction network, the confidence
estimation network needs relatively lower number of parame-
ters, and such shallower networks can be learned even with
limited sparse disparities as in [28] and [29]. The loss function
of the CEN is designed to predict the confidence Q with
respect to the ground truth confidence Q∗ defined as follows:

Q∗
i = G(|D∗

i − Di |; δ), (7)
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TABLE II

OUR NETWORK ARCHITECTURE OF CONFIDENCE
ESTIMATION NETWORK

Fig. 5. Importance of a joint use of matching probability volume and disparity
map in the confidence estimation: (a) left color image, (b) an initial disparity
map estimated using MC-CNN [9]. Confidence maps were estimated using the
matching probability volume only in (c), disparity map only in (e), and both
matching probability volume and disparity map in (g), respectively. (d), (f),
and (h) represent disparity map refined using the confidence maps in (c), (e),
and (g), respectively. By jointly using the matching probability volume and
disparity map, our method provide reliable confidence estimation performance.

where δ is a threshold parameter to compare the ground truth
disparity D∗ and the estimated disparity D which is the output
of the matching probability construction network.

The loss function for the confidence estimation network
LC E N is then defined as the cross-entropy loss:

LC E N = −
∑

i

[
Q∗

i logQi + (1 − Q∗
i )log(1 − Qi )

]
. (8)

Fig. 6. Importance of a semi-supervised loss for learning the matching
probability construction network: (a) left and (b) right color images, (c)
an initial disparity map estimated using MC-CNN [9], (d) sparse ground
truth disparity map. Disparity maps estimated from matching probability
construction network learned (e) with only supervised loss (Lsup ) and (f) with
semi-supervised loss (Lsup and Lunsup ). The errors within the regions where
the ground truth is not defined are efficiently removed with unsupervised loss.

Fig. 7. The effectiveness of the proposed matching probability volume
network: (a) left color image, (b) sparse ground truth disparity map, (c)
an initial disparity map estimated using MC-CNN [9], (d) an intermediate
disparity map obtained by the proposed matching probability volume network.
(e) and (f) represent refined disparity map of (c) and (d), respectively.

Note that the ground truth confidence Q∗ varies during
training unlike existing confidence estimation approaches in
[28] and [29] which Q∗ is fixed during training. Our key
contribution is to refine the cost volume during training to
provide highly discriminative confidence features and refined
disparity maps. Note that Q∗ is computed by comparing
the resultant disparity map and the ground truth disparity
map. Namely, the cost volume refinement (CVR) network
evolves and improves the matching cost and its associated
disparity map during training, leading to varying ground truth
confidence Q∗.

IV. VALIDATION

So far we have explained the CNN-based approach to
improve the accuracy of the confidence and disparity maps
in a boosting manner. By evolving the training, the quality of
intermediate disparity maps is improved implicitly in Fig. 7(d)
when compared to an initial disparity map in Fig. 7(c).
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TABLE III

EXPERIMENTAL CONFIGURATION

Fig. 8. Ablation study: (a) Average AUC value of different K for top-K
pooling layer and (b) different level of multi-scale L for MID 2006, MID
2014, and KITTI 2015 dataset (from left to right). The raw matching cost is
MC-CNN [9].

However, the performance gain is still limited as no confidence
map is involved in the cost volume refinement step [32].
In this section, we introduce three validatation methods to
prove the effectiveness of our confidence measure in the post-
processing step of the stereo matching pipeline. With the post-
processing steps, the erroneous disparities are corrected using
the estimated confidence map as shown in Fig. 7(f).

A. Cost Modulation Based Optimization

Following [24], we first incorporate the predicted confidence
map into stereo matching algorithms by modulating the refined
cost volume such that

Ĉi,d = Qi C
′
i,d + (1 − Qi )

∑

d
C ′

i,d/dmax. (9)

After modulating the refined cost volume, the refined cost of
confident pixels remain unchanged while those of unconfident
pixels are flattened. Thus unconfident pixels can be easily
dominated by confident neighboring pixels in the optimization
step. To produce a final disparity map D̂, the modulated cost
function Ĉ is then optimized using global approaches such as
SGM [8] or belief propagation [48].

B. GCPs-Based Optimization

The predicted confidence can also be incorporated in GCPs-
based optimization as in [38]. We first set reliable pixels that
have a higher value than a threshold τ as the GCPs, and then
globally propagate the initial GCPs through an MRF-based
optimization by minimizing the following energy function:

EGC P =
∑

i

⎛

⎜
⎝hi (D̂i − Di )

2 + λ1

∑

j∈N 4
i

wI
i, j (D̂i − D̂ j )

2

⎞

⎟
⎠,

(10)

Fig. 9. Sparsification curve for (a) ‘Baby3’, (b) ‘Midd2’, and (c) ‘Wood1’
images selected from the MID 2006 dataset [39] using census-SGM, and
(d) ‘Mask’, (e) ‘Playtable’, and (f) ‘Sticks’ images selected from the MID
2014 dataset [40] using MC-CNN. The sparsification curve for a ground truth
confidence map is described as ‘optimal’.

where hi is the binary mask to indicate the GCPs, and D̂i is
output disparity map. wI

i, j is the affinity between i and j in
the feature space consisting of color I and spatial location, and
N 4

i represents a local 4-neighborhood. This simple quadratic
optimization can be efficiently solved using [38].

C. Aggregated GCPs-Based Optimization

We further utilize an aggregated data term to mitigate
propagation errors by inaccurately estimated confidences when
interpolating a sparse disparity map obtained by thresholding
the confidence map. It was shown in [38] that a more robust
data constraint using an aggregated data term leads to a
better quality in the sparse data interpolation. In this regard,
we define the energy function as follows:

E AGC P

=
∑

i

⎛

⎜
⎝

∑

r∈Mi

hr cI
i,r (D̂i − Dr )

2 + λ2

∑

j∈N 4
i

wI
i, j (D̂i − D̂ j )

2

⎞

⎟
⎠,

(11)

where Mi represents a set of neighborhoods used to aggregate
the disparity map filtered out with the confidence Q. Note that
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Fig. 10. AUC values of (a) census-based SGM and (b) MC-CNN for the KITTI 2015 dataset [33]. We sort the AUC values in the ascending order according
to the proposed AUC values. The ‘optimal’ AUC values are calculated using ground truth confidence map.

TABLE IV

THE AVERAGE AUC VALUES FOR MID 2006 [39], MID 2014 [40], AND KITTI 2015 [33] DATASET. THE AUC VALUE

OF GROUND TRUTH CONFIDENCE IS MEASURED AS ‘OPTIMAL’. THE RESULT WITH THE LOWEST

AUC VALUE IN EACH EXPERIMENT IS HIGHLIGHTED

Mi is not limited to N4 neighbors, but usually more neighbors
are used for ensuring a large support according to [38]. We
define cI

i,r using a bilateral kernel between pixel i and r in the
feature space consisting of color intensity I , spatial location,
and estimated confidence as used in [27]. wI

i, j is defined
similar to the above section. This optimization can also be
efficiently solved using constant-time edge-aware filtering and
sparse matrix solver [38].

V. EXPERIMENTAL RESULTS

A. Experimental Settings

In the following, we evaluated the proposed method com-
pared to conventional shallow classifier based approaches
such as Haeusler et al. [23], Spyropoulos et al. [20],
Park and Yoon [24], Poggi and Mattoccia (O(1)) [25],
Kim et al. [27], and CNN-based approaches such as Poggi
and Mattoccia [29], Seki and Pollefey [28], and Shaked and
Wolf [32]. We obtained the results of [24] by using the author-
provided MATLAB code, while the results of [20], [23], [28],
and [32] were obtained using our own MATLAB imple-
mentation. For [25] and [29], we re-impelemented the
algorithms based on author’s lua code. For an evalua-
tion, we used the Middlebury (MID) 2006 [39], MID
2014 [40], and MPI [34] dataset taken or synthesized under

carefully-controlled environments, and real-world datasets as
KITTI [33], as described in Table III. For MID 2006 and
MID 2014, we trained the classifier using 981 images in
the MPI dataset and for KITTI 2015 dataset, we trained the
classifier using 194 stereo pairs in KITTI 2012 dataset [33] for
supervised loss Lsup , and 40,000 raw stereo image pairs for
unsupervised loss Lunsup . To evaluate the performance of the
confidence measure quantitatively, we used the sparsification
curve and its area under curve (AUC) as in [20], [23], [24],
and [28]. The sparsification curve draws a bad pixel rate while
successively removing pixels in descending order of confi-
dence values in the disparity map, thus it enables us to observe
the tendency of prediction errors. AUC quantifies the ability of
a confidence measure to estimate correct matches. The higher
the accuracy of the confidence measure is, the lower the AUC
value is. To evaluate the disparity refinement performance
using the estimated confidence map, we also measured the
average bad matching percentage (BMP) as in [39].

B. Implementation Details

Our networks are trained in an end-to-end manner, given
the raw cost volume as an input and the ground truth dis-
parity and ground truth confidence as outputs. For training
and testing networks, we used the VLFeat MatConvNet
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Fig. 11. The confidence and refined disparity maps on the MID 2006 dataset [39] using census-based SGM+mod. (1st and 2nd rows), +GCPs
(3rd and 4th rows), and +AGCPs (5th and 6th rows) (a) Color images and initial disparity maps, refined disparity maps with confidence maps estimated by
(b) Park and Yoon [24], (c) Poggi et al. (O(1)) [25], (d) Kim et al. [27], (e) proposed wo/CVR [41], (f) proposed, and (g) ground truth confidence map.

toolbox [49]. We make use of the stochastic gradient
descent with momentum, and set the learning rate 1e − 4 and
the batch size 50. The proposed method was implemented in
MATLAB and was simulated on a PC with TitanX GPU. To
compute a raw matching cost, we used a census transform with
a 5×5 local window followed by SGM and the matching cost
with a convolutional neural network (MC-CNN) method [9].
For computing the MC-CNN, ‘KITTI 2012 fast network’ was
used, provided at the author’s website [50]. For the census
transform, we applied SGM [8] on the estimated cost volume
by setting P1 = 0.008 and P2 = 0.126 as in [24]. We set
ρ to 0.9 at which the density of confident regions used in
the loss computation becomes 75% on average. The flatness
parameter σ for obtaining the matching probability volume
is set as 100 and 0.05 for SGM and MC-CNN respectively,
according to their relative scales. The pre-defined number of
epoch was set empirically to 200 at which the networks is
pre-trained and converged with the supervised loss only. The
hyper-parameter λ is set to 1.

C. Component Analysis
We first analyzed the performance of the proposed confi-

dence estimation method as varying the number of K in top-
K pooling and the scale L for multi-scale disparity feature
extraction in confidence estimation network. AUC values
as varying K are shown in Fig. 8(a). If K is too small,
the discriminative power becomes low. As K increases over
5, the AUC value is degraded because of the redundancy.
We set K as 5 in all experiments. Fig. 8(b) shows the
convergence anlysis for varying numbers of scale L from
1 to 8. The AUC value decreases as L increases, and con-
verges after L = 4. Based on these experiments, we set
L = 4 for considering the trade-off between accuracy and
complexity.

Moreover, for ablation experiments to validate the com-
ponets, we evaluated the proposed method without cost volume
refinement network (Proposed wo/CVR) [41] which is the pre-
vious version of the proposed method, without top-K pooling
layer (Proposed wo/Top-K ), and without multi-scale disparity
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Fig. 12. The confidence and refined disparity maps on MID 2006 dataset [39] using MC-CNN+mod. (1st and 2nd rows), +GCPs (3rd and 4th rows), and
+AGCPs (5th and 6th rows) (a) Color images and initial disparity maps, refined disparity maps with confidence maps estimated by (b) Haeusler et al. [23],
(c) Poggi et al. [29], (d) Seki and Pollefeys [28], (e) proposed wo/CVR [41], (f) proposed, and (g) ground truth confidence map.

feature extraction (Proposed wo/MDF) in quantitative results
of average AUC values for various datasets as in Table IV.
Quantitative result also shows the effectiveness of multi-scale
disparity feature extraction (Proposed wo/MDF) and top-K
pooling layer (Proposed wo/Top-K ).

D. Confidence Measure Analysis

We compared the AUC of our method with conventional
learning-based approaches using handcrafted confidence fea-
tures [20], [23]–[25], [27] and CNN-based methods [28], [29],
[32]. The optimal AUC can be obtained with a ground truth
confidence map. Sparsification curves for selected frames in
the MID 2006 [39] and MID 2014 dataset [40] with census-
based SGM and MC-CNN are shown in Fig. 9. The results
have shown that the proposed confidence estimator exhibits a
better performance than conventional handcrafted approaches
[20], [23]–[25], [27] and CNN-based approaches [28], [29],
[32]. Fig. 10 describes the AUC values, which are sorted in
ascending order, for the KITTI 2015 dataset [33] with census-
based SGM and MC-CNN respectively. The handcrafted

approaches showed inferior performance than the proposed
method due to low discriminative power of the handcrafted
confidence features. CNN-based methods [28], [29], [32]
have improved confidence estimation performance compared
to existing handcrafted methods such as [24], but they are
still inferior to our method as they rely on either used only
estimated disparity maps or cost volume to predict unreliable
pixels.

The estimated confidence maps are shown in
Fig. 11 - Fig. 16. The resultant confidence maps of our
method looks different since the confidence maps of ours
were obtained from the matching probability volume while
others are obtained from the raw matching cost volume.
Note that the confidence map can also be predicted directly
from the matching cost volume without the CVR network,
named as ‘Proposed wo/CVR [41]’ in Fig. 11 - Fig. 14.
Experimental results demonstrate that the CVR network
enables us to estimate more accurate confidence and disparity
maps simultaneously in a boosting manner. Moreover,
the average AUC value with census-based SGM and
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Fig. 13. The confidence and refined disparity maps on MID 2014 dataset [40] using census-based SGM+mod. (1st and 2nd rows), +GCPs (3rd and
4th rows), and +AGCPs (5th and 6th rows) (a) Color images and initial disparity maps, refined disparity maps with confidence maps estimated by
(b) Spyropoulos et al. [20], (c) Poggi et al. [29], (d) Seki and Pollefeys [28], (e) proposed wo/CVR [41], (f) proposed, and (g) ground truth confidence
map.

MC-CNN for MID 2006, MID 2014, KITTI 2015 datasets
were summarized in Table IV. The proposed method always
yield the lowest AUC values, showing the superiority of
the proposed method compared to the existing CNN-based
classifiers [28], [29], [32].

E. Stereo Matching Analysis

To verify the robustness of the confidence measures,
we refined the disparity map using the confidence maps
estimated by several confidence measure approaches including
ours. For refining the disparity maps, we used three different
schemes described in Sec. 4, which are cost modulation
(mod.) based optimization [24] and GCPs-based optimiza-
tion (GCPs) [37], and aggregated GCPs-based optimization
(AGCPs) [38] without additional post-processing to clearly
show the performance gain achieved by the confidence mea-
sure. Note that there exist several literatures to evaluate
the confidence measures, but this experiment is the first
attempt to evaluate various confidence measures including both
conventional methods and CNN-based methods in refining
the disparity map. To evaluate the quantitative performance,
we measured an average BMP for the MID 2006 [39], MID
2014 [40], and KITTI 2015 [33] datasets. Table V and Table VI
show the BMP with one/three pixels when using census-based
SGM and MC-CNN respectively. For MID 2006 and MID

2014, since there are occluded pixels in ground truth disparity
map, we computed the BMP only for visible pixels. The KITTI
2015 benchmark provides a sparse ground truth disparity map
thus we evaluated the BMP only for sparse pixels with the
ground truth disparity values. Note that the optimal percentage
of BMP was obtained by measuring the ratio of erroneous
pixels in which the absolute difference between the disparity
map refined using ground truth confidence map and the ground
truth disparity map is larger than one or three pixels, respec-
tively. The proposed method achieves the lowest BMP in all
experiments.

Fig. 11 - Fig. 16 display the disparity maps refined
with the confidence maps estimated from the existing
handcrafted classifiers [20], [24], [25], [27] CNN-based clas-
sifiers [29], [28], [32] and the proposed method. SGM modu-
lation, GCPs-based optimization, and aggregated GCPs-based
optimization were used to refine the disparity maps for the
MID 2006 [39], MID 2014 [40], and KITTI 2015 [33]
datasets with census-based SGM and MC-CNN respectively.
It was clearly shown that the erroneous matches are reliably
removed using the proposed confidence measure. For the
KITTI 2015 dataset [33], erroneous disparities usually occur
in textureless regions (sky and road) as shown in Fig. 15
and Fig. 16. Conventional approaches [25], [28], [29] show
the limited performance for detecting incorrect pixels in
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Fig. 14. The confidence and refined disparity maps on MID 2014 dataset [40] using MC-CNN+mod. (1st and 2nd rows), +GCPs.(3rd and 4th rows), and
+AGCPs. (5th and 6th rows) (a) Color images and initial disparity maps, refined disparity maps with confidence maps estimated by (b) Park and Yoon [24],
(c) O(1) [25], (d) Poggi et al. [29], (e) proposed wo/CVR [41], (f) proposed, and (g) ground truth confidence map.

Fig. 15. The confidence and refined disparity maps on KITTI 2015 dataset [33] using census-based SGM+mod. (1st and 2nd rows), +GCPs (3rd
and 4th rows), and +AGCPs (5th and 6th rows) (a) Color images and initial disparity maps, refined disparity maps with confidence maps estimated by
(b) Poggi et al. O(1) [25], (c) Seki and Pollefeys [28], and (d) ours.

textureless regions, and thus they affect the matching quality
of the subsequent disparity estimation pipeline. In contrast,

the proposed method can detect mismatched pixels more
reliably.
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Fig. 16. The confidence and refined disparity maps on KITTI 2015 dataset [33] using MC-CNN+mod. (1st and 2nd rows), +GCPs (3rd and
4th rows), and +AGCPs (5th and 6th rows) (a) Color images and initial disparity maps, refined disparity maps with confidence maps estimated by
(b) Poggi et al. O(1) [25], (c) Poggi et al. [29], and (d) ours.

TABLE V

THE BMP OF THE RESULTANT DISPARITY MAP ON MID 2006 [39], MID 2014 [40], AND KITTI 2015 [33] DATASET WITH CENSUS-BASED SGM. THE
BAD PIXEL ERROR RATE OF THE REFINED DISPARITY MAP USING GROUND TRUTH CONFIDENCE IS MEASURED AS ‘OPTIMAL’. THE BMP IS

MEASURED WITH ONE/THREE PIXEL ERRORS. THE RESULT WITH THE LOWEST BMP IN EACH EXPERIMENT IS HIGHLIGHTED

TABLE VI

THE BMP OF THE RESULTANT DISPARITY MAP ON MID 2006 [39], MID 2014 [40], AND KITTI 2015 [33] DATASET WITH MC-CNN. THE BMP OF
THE REFINED DISPARITY MAP USING GROUND TRUTH CONFIDENCE IS MEASURED AS ‘OPTIMAL’. THE BMP IS MEASURED WITH ONE/THREE

PIXEL ERRORS. THE RESULT WITH THE LOWEST BMP IN EACH EXPERIMENT IS HIGHLIGHTED

VI. CONCLUSION

In this study, we have presented a learning framework for
estimating the stereo confidence through CNNs. We have

shown that the optimal confidence features can be learned
from the matching probability together with the disparity
map. The matching probability volume is first generated
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by refining and normalizing the matching cost volume, and
then the confidence is estimated through deep networks with
the matching probability and its corresponding disparity as
inputs. Highly discriminative confidence features are learned
by leveraging the multi-scale disparity features. Moreover,
the proposed semi-supervised loss enables us to effectively
learn the networks even with sparse ground truth disparity
maps by using highly confident pixels of intermediate results
for computing the image reconstruction loss. We validated the
effectiveness of the proposed method by obtaining accurate
and robust disparity maps on public datasets and challenging
outdoor scenes through the depth refinement procedure using
the estimated confidence map.
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