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Abstract—Confidence estimation is essential for refining stereo
matching results through a post-processing step. This problem
has recently been studied using a learning-based approach,
which demonstrates a substantial improvement on conventional
simple non-learning based methods. However, the formulation of
learning-based methods that individually estimates the confidence
of each pixel disregards the spatial coherency that may exist
in the confidence map, thus providing a limited performance
under challenging conditions. Our key observation is that the
confidence features and resulting confidence maps are smoothly
varying in the spatial domain and highly correlated within
the smooth regions of an image. We present a new approach
that imposes spatial consistency on the confidence estimation.
Specifically, a set of robust confidence features is extracted from
each decomposed superpixel using the Gaussian mixture model
(GMM), and then these features are concatenated with pixel-
level confidence features. The features are then enhanced through
adaptive filtering in the feature domain. In addition, the resulting
confidence map, estimated using the confidence features with a
random regression forest, is further improved through K-nearest
neighbor (K-NN) based aggregation on both the pixel- and
superpixel-level. To validate the proposed confidence estimation
scheme, we employed cost modulation or ground control points
(GCPs) based optimization in stereo matching. Experimental re-
sults demonstrate that the proposed method outperforms state-of-
the-art approaches on various benchmarks including challenging
outdoor scenes.

Index Terms—confidence measure, confidence feature aug-
mentation, confidence map aggregation, ground control point,
random regression forest.

I. INTRODUCTION

STEREO matching has long been an important and fun-
damental topic in the field of computer vision. However,

the estimation of accurate corresponding pixels between stereo
image pairs in real-world stereo data remains an unsolved
problem in particular in the presence of textureless or repeated
pattern regions, and occlusions [1]–[3]. Furthermore, photo-
metric variations, such as illumination changes and sensor
noise, pose considerably more challenges [4]–[6]. These issues
hinder the application to practical systems.

In order to address these issues, numerous approaches [4]–
[6], [8]–[11] have been proposed that focus primarily on
developing robust matching cost measures. The use of these
robust cost measures, however, does not fully address the
inherent problem of stereo matching. Although the application
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Fig. 1. Importance of a spatial coherency in the confidence estimation: (a)
left color image, (b) an initial disparity map estimated using census transform
and CVF. Confidence maps were estimated using (c) the per-pixel classifier
[7] and (d) the proposed method, respectively. (e) and (f) represent disparity
maps consisting of disparity values classified as ‘reliable’ by thresholding
using (c) and (d). Erroneous pixels, which are not determined as inaccurate
disparity estimates using the confidence maps, are marked as ‘yellow’. (g)
and (h) represent disparity maps refined using the confidence maps in (c) and
(d), respectively. By leveraging the spatial coherency, the proposed method
increases a true negative (TN) accuracy, achieving a significant performance
gain on both the confidence estimation and the disparity map refinement.

of certain popular regularization techniques, such as semi-
global matching (SGM) [12] and cost volume filtering (CVF)
[13] could facilitate the estimation of a reliable solution, it
also faces similar limitations.

To alleviate this problem, almost all stereo matching meth-
ods involve a post-processing step, where first mismatched
pixels are detected using a confidence measure and then
these regions are filled with their neighbor information [12]–
[16]. Several methods [7], [14]–[19] have been proposed for
detecting mismatched pixels by leveraging various confidence
features. Among them, learning-based approaches [7], [16],
[19], which train a per-pixel classifier with a set of confidence
features, demonstrate distinct strengths as compared to existing
simple non-learning based approaches [20] (e.g., left-right
consistency or peak ratio). In these learning-based approaches,
the manner in which a set of informative confidence features
is combined for maximizing the performance of the classifier
is critical. [16], [19], [21]. In particular, Park and Yoon [7]
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extracted a subset of the most important confidence measrues
by using the permutation importance accuracy measure [22],
and then used these confidence measures as input for training
the classifier based on a random decision forest model [23],
[24]. However, their method simply makes a decision about the
confidence of each pixel independently without considering
the spatial coherency that may exist in the confidence map.
Thus, such a classifier is still insufficient for reliably detecting
mismatched pixels under challenging conditions.

In general, most stereo matching algorithms employ a
spatial smoothness assumption to produce a more accurate
disparity map [25]. For instance, global methods [12], [26],
[27] explicitly incorporate the spatial smoothness assumption
in a global manner into an energy-minimization framework.
In local methods [13], matching costs are locally smoothed
by applying edge-preserving filters, yielding a considerable
accuracy gain. In this regard, it is natural to assume that
the confidence maps estimated from most stereo matching
methods also tend to be spatially smooth, except for object
boundary regions. This observation provides useful cues for
designing a robust confidence estimator.

In this paper, we propose a new approach for obtaining
confidence measures that imposes spatial consistency on the
confidence estimation. Our confidence estimator consists of
two key ingredients: 1) confidence feature augmentation and
2) confidence map aggregation. Specifically, we impose spatial
coherency on the confidence estimation by combining con-
fidence features from both the pixel- and superpixel-level.
Gouveia et al. [28] also proposed a superpixel-based confi-
dence estimation, but their method involves a superpixel-based
disparity fitting process and thus loses pixel-level precision in
the confidence estimation. In contrast, our confidence feature
is augmented by using the confidence feature computed at
the superpixel-level together with the pixel-level confidence
feature. Moreover, the superpixel is further decomposed by
applying a Gaussian mixture model (GMM) using the pixel-
level confidence features to effectively deal with superpixel
segmentation errors and outliers caused by occluded pixels
within the superpixel. The proposed scheme achieves im-
proved the robustness by imposing spatial coherence while
maintaining the pixel-level estimation details. Furthermore, we
alleviate the fluctuation of confidence features by applying
efficient high-dimensional filtering. In the testing phase, the
confidence map is refined using the confidence values of the K-
nearest neighbors (K-NN) for each pixel (or superpixel) under
the assumption that pixels with similar confidence features are
likely to have similar confidence values.

Fig. 1 shows the effectiveness of the proposed confidence
estimator. Fig. 1(b) shows an example of a spatially smooth
initial disparity map. While the existing per-pixel confidence
estimator [7] frequently produces undesired results, in partic-
ular for large-textureless regions and occlusions, as shown in
Fig. 1(c), the proposed confidence estimator reliably estimates
mismatched pixels by leveraging the spatial coherency as
shown in Fig. 1(d). The experimental results show that our
approach consistently outperforms existing pixel-level confi-
dence measure methods on various benchmarks.

II. RELATED WORKS

Numerous approaches have been proposed based on var-
ious confidence features [7], [16], [17], [19], [29], [30]. A
comparative study of confidence features was provided in
[30], where 17 individual confidence features, e.g., left right
difference (LRD), matching score measure (MS), and peak
ratio (PKR), were analyzed by grouping them into 5 categories
and evaluating their capability to predict the mismatched pixel
in an estimated disparity map. In [30], it was concluded that
there is no single confidence feature that can reliably estimate
the confidence map across various scenes.

To alleviate these limitations, methods have been proposed
for increasing the accuracy of mismatched pixels prediction in
which individual confidence features are combineded. Pfeiffer
et al. [31] utilize stereo confidence cues from three confidence
metrics, peak-ratio naive (PKRN), maximum likelihood metric
(MLM), and local curve (LC) information, and improved the
accuracy of disparity maps by propagating all the confidence
values together with the measured disparities in a Bayesian
framework. However, the combination of above three confi-
dence measure is not always effective and thus, it is difficult
to apply this algorithm for various databases.

Recently, several approaches [7], [16], [19] that attempt
to train a confidence classifier from training data and de-
termine the mismatched pixels using the learned classifier
were proposed. In general, these approaches first define the
confidence feature vector, which consists of a set of different
confidence features, and then train a simple classifier, e.g.,
random decision forest [23], using the defined confidence
features and ground truth confidence values. Haeusler et
al. [19] combined multiple confidence features and learned
the classifier on the correctness of the output disparities.
Spyropoulos and Modorhai [16] combined diverse confidence
features into a feature vector similarly to the method presented
in [19]. They defined confident pixels as ground control points
(GCPs) and formulated an a global optimization in a Markov
random field (MRF) framework. However, the performance of
the method is still limited because of the unreliable confidence
features and classifiers. These issues can be addressed by
selecting the best set of confidence features among multiple
confidence features. Park and Yoon [7] utilized the regression
forest framework to select the most important set of confidence
features and then trained the regression forest classifiers again
to predict the confidence of matching pixels using the selected
confidence features. However, all these methods determine the
confidence at pixel-level without a spatial constraint, which
also limits the detection performance. Gouveia et al. [28]
proposed an approach for constructing the confidence features
by leveraging superpixel-based disparity voting. Although
their method extracts meaningful confidence features from
superpixels, the results lose pixel-level precision and are very
sensitive to segmentation errors. Recently, Seki et al. [32]
proposed convolutional neural networks (CNNs) based on a
confidence estimator. However, they used only the disparity
map to predict confidences, and thus, their method was limited
in terms of learining optimal confidence features.
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Fig. 2. Visual comparison of confidence maps: (a) left color image, (b) an
initial disparity map. (c) represents a confidence map estimated using the per-
pixel classifier [7]. (e) shows a confidence map refined by simply applying the
guided filter [33]. (g) represents our result. (d), (f), and (h) represent disparity
maps consisting of disparity values classified as ‘reliable’ by thresholding
using (c), (e), and (g) respectively. Erroneous pixels, which are not determined
as inaccurate disparity estimates using the confidence maps, are marked as
‘yellow’. The AUC of (c), (e), and (g) is 0.049, 0.046, and 0.041 respectively.
The optimal AUC with a ground truth confidence map is 0.025.

III. PROPOSED METHOD

A. Problem Formulation and Overview

Let us define stereo image pairs ILi , I
R
i : I → R3 for pixel

i = [ix, iy]T , where I ⊂ N2 is a discrete image domain. Using
existing stereo matching approaches, we first compute a 3-D
cost volume Ci,d with a disparity d ∈ {1, ..., dmax}, where dmax
is a maximum allowed disparity, and estimate its associated
disparity map Di = argmindCi,d. A ground truth confidence
map Q∗i is then computed by simply comparing the estimated
disparity map Di and the ground truth disparity map D∗i . The
objective of this study was to estimate a reliable confidence
Qi ∈ [0, 1], which represents the confidence of Di. Formally,
it can be estimated by learning the classifier R : fi → Q∗i
with a confidence feature fi : I → RNf and the ground truth
confidence map Q∗i . The confidence feature fi is typically
defined using the cost volume Ci,d and/or its corresponding
disparity Di, where Nf is the dimension of the confidence
feature.

Most existing stereo matching methods construct the cost
volume by employing the spatial smoothness constraint both
globlayy and locally [25]. In global methods [12], they ap-
ply an explicit smoothness assumption and find an optimal
disparity by solving an MRF-based optimization problem.
Local methods [10], [13] compute the disparity within a finite
support region by aggregating the pixel-based matching cost to
implicitly impose the smoothness assumption. In this context,
the confidence map estimated from the smoothly varying
disparity map also tends to exhibit similar attributes, as exem-
plified in Fig. 1. However, conventional approaches [7], [16],
[19] estimate the confidence map by utilizing a confidence

feature vector defined on each pixel independently without
considering any spatial dependency, thus frequently producing
poor results. A structured learning framework has been used
to provide structured (i.e., spatially smooth) outputs by taking
into account input data from adjacent pixels in the classifier
[34]–[36]. For instance, in [34], a spatially coherent edge map
is estimated by designing the structured classifier that takes
advantage of the structure present in local image patches.
In our work, confidence features often contain severe, dense
outliers because of occlusion, which poses challenges for
designing a reliable structured classifier. Instead of designing a
structured classifier for the confidence estimation, in this study
we aimed at improving the performance of the confidence
classification even with a conventional classifier (e.g., random
regression forest) by exploiting spatially coherent confidence
features.

The design of such confidence features is, however, a non-
trivial task. One simple solution is to apply existing edge-
preserving filters (e.g., guided filter [33] or bilateral filter [37])
for aggregating the pixel-level confidence feature (or confi-
dence map) in a locally adaptive manner, as in cost aggregation
schemes in stereo matching. However, this simple aggregation
is not very effective because of the nonlinearity of confidence
features and dense outliers incurred by occlusion. Fig. 2
shows that such simple filtering is not effective. Although
we assume that the confidence map is spatially smooth, a
conventional smoothing filter cannot improve the performance
of the confidence measure, as shown in Fig. 2(f). However,
the proposed method effectively removes mismatched pixels
as shown in Fig. 2(h).

In our approach, we first decompose a color image using an
off-the-shelf superpixel decomposition method for generating
superpixel-level confidence features under the assumption that
pixels belonging to the same superpixel are likely to have sim-
ilar confidence features and confidence values. To effectively
address superpixel segmentation errors (due to hard decisions
on object boundaries) and dense outliers such as occluded
pixels within a superpixel, we generate a set of reliable
confidence features through clustering based on the GMM
within each superpixel. For training the confidence classifier,
we adaptively combine the pixel-level and superpixel-level
confidence features for each pixel. Such adaptive confidence
features considerably increase the robustness of the classifier,
while retaining the pixel-level precision on the estimated
confidence map.

These robust confidence features are also beneficial in
the testing phase. The estimated confidence map is further
enhanced by leveraging the correlation between the confidence
features and the confidence map. Namely, pixels with similar
confidence features are highly like to have similar confidence
values. We thus refine the estimated confidence value through
an adaptive summation weighted by K-NN confidence fea-
tures in a multi-scale manner. The overall framework of our
approach is summarized in Fig. 3.

B. Confidence Feature Augmentation (CFA)
To design a more distinctive confidence feature, we use

the confidence features computed at both the pixel- and
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Fig. 3. Framework of the proposed confidence estimation method, consisting
of confidence feature augmentation (CFA) and multi-scale confidence map
aggregation (MCMA).

superpixel-level. A confidence classifier is then simply trained
using a random regression forest [24].

1) Pixel-level Confidence Feature: We start with the pixel-
level confidence feature vector fi for a pixel i. We select the
set of the most important confidence features from various
confidence feature candidates as in [7]. From an estimated
cost volume Ci,d derived with a cost function (e.g., census
transform [4]) and its corresponding disparity map Di, we
construct a confidence feature vector fi with the ensemble of
independent confidence features. We use 8×1 confidence fea-
ture vectors used in [7], which utilize two different feature sets
according to the database. ‘feature selection 1’ is composed
of LRC, the distance to the border, LRD, the median disparity
deviation values (MDDs) in three different scales, MLM, and
the MS, and ‘feature selection 2’ is composed of MDDs in
four different scales, LRD, MLM, PKRN, and the negative
entropy measure. It should be noted that our framework can
be incorporated with any other confidence features.

2) Superpixel-level Confidence Feature: As mentioned ear-
lier, we consider a spatial smoothness assumption for con-
fidence features. To this end, we propose two stage image
decomposition strategy. We first decompose the reference
image, e.g., IL, into a set of non-overlapping superpixels
S = {Sm|

⋃
m Sm = I, m = 1, ...,MS}, where MS is the

number of superpixels. In this study, we used the SLIC su-
perpixel algorithm [38], but any other off-the-shelf superpixel
segmentation approaches can be used. Within each superpixel
region Sm, we generate a set of reliable confidence features
from the pixel-level confidence feature fi. In order to deal
with superpixel segmentation errors and outliers caused by
occluded pixels within the superpixel, we further decompose
each superpixel into M sub-clusters using the GMM model
[39]. For the superpixel Sm, input features for clustering based
on the GMM model are formed with the pixel-level confidence
feature and spatial information such that xi = [fTi , ix, iy]T

for i ∈ Sm. Note that the spatial information (ix, iy) is
used together so that spatially adjacent confidence features are
grouped.
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Fig. 4. Effectiveness of the proposed confidence feature augmentation
scheme: (a) left color image, (b) ground truth confidence map. (c), (d), (e),
and (f) show enlarged windows for (a) and (b) with superpixels overlaid. The
superpixels marked with the ‘green’ contour in (c) and (e) contain occlusion
and inaccurate segmentation boundary, respectively. (g) and (h) represent
confidence maps estimated using simple SLIC superpixel confidence features
(L = 1) and confidence features augmented using both SLIC superpixel and
GMM clustering (L = 2), respectively. (i) and (k) show regions enlarged
from the confidence map in (g). (j) and (l) show regions enlarged from
the confidence map in (h). (m) and (n) represent the set of 3-dim feature
vectors computed in the superpixels with the ‘green’ boundaries in (c) and
(e), respectively. For the purpose of visualization, the 10-dim feature vectors
xi are projected into 3-dim feature vectors. It validates the effectiveness of our
approach that re-decomposes the SLIC superpixels through GMM clustering
using the set of pixel-level confidence features.

Let us define the GMM parameter θm = {φlm, µl
m,Σ

l
m|l =

1, 2, ..., L} of each superpixel Sm. We also define the multi-
nomial Gaussian distribution of xi as N (xi|µl

m,Σ
l
m). Then,

the likelihood function to xi with respect to θm can be defined
such that

Pr(xi|θm) =
∑

l
φlmN (xi|µl

m,Σ
l
m). (1)

Based on the estimated parameters θm, we can decompose
each superpixel into L sub-clusters. The GMM is built using
the expectation-maximization (EM) algorithm [40]. With a
sub-cluster label zl, the sub-cluster probability for each pixel
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i within superpixel Sm can be estimated:

Pr(zl = 1|xi) =
φlmN (xi|µl

m,Σ
l
m)∑

k φ
k
mN (xi|µk

m,Σ
k
m)
, (2)

where k ∈ {1, 2, ...,M}. With Pr(zl = 1|xi), we determine
which sub-cluster the pixel i ∈ Sm belongs to by computing
li = argmaxlPr(zl = 1|xi). Then, for the simplicity of nota-
tion, we re-define a set of the final superpixels S′ = {S ′n|n =
1, ..., NS′} and a set of its associated superpixel-level features
{µn|n = 1, ..., NS′} over an entire image, where the number
of the final superpixels NS′ = LMS. Note that it is assumed
that the number of sub-clusters L is fixed for all superpixels.

When the pixel i belongs to S ′n, i.e., i ∈ S ′n, the augmented
confidence feature gi is built by concatenating the pixel-level
confidence feature fi and the superpixel-level feature µn as
follows:

gi = [fTi , µn]T . (3)

Note that pixels belonging to the same superpixel have the
same superpixel-level confidence feature µn. The augmented
confidence feature µn is more robust to outliers compared
to fi, but it might lose a pixel-level precision on confidence
estimation. By simultaneously leveraging the pixel-level con-
fidence feature fi and superpixel-level confidence feature µn,
we are capable of encoding the distinctive confidence feature
with both pixel- and superpixel-level constraints. The proposed
confidence feature preserves the pixel-level precision on the
confidence estimation while maintaining the robustness to
outliers. Interestingly, a superpixel-based approach has been
developed in the stereo matching literature such that disparity
fitting results within color segments are additionally used
for defining an objective function for global optimization
[41], demonstrating highly accurate disparity estimation per-
formance.

To further alleviate the fluctuation of the augmented con-
fidence feature gi, we filter it out, where the filter kernel is
based on weights defined from confidence feature itself. Here,
we apply adaptive manifold filter to efficiently perform high-
dimensional filtering [42] such that

g̃i =
∑

j∈Ni

W g
i,jgj , (4)

where W g
i,j is the weight function representing the confidence

feature similarity, defined such that

W g
i,j =

exp(−‖gi − gj‖2/σg)∑
j∈Ni

exp(−‖gi − gj‖2/σg)
, (5)

where Ni is the local window of filter and σg is the standard
deviation of the Gaussian function. Note that we define the
weight W g

i,j using only confidence feature without considering
spatial distances, since we use the confidence features within
the local window Ni in defining weights.

In Fig. 4, we demonstrate the effectiveness of the proposed
confidence feature augmentation scheme. Two cases that may
frequently occur in the superpixels are considered: occlusion,
as shown in Fig. 4(c), and segmentation errors, as shown in
Fig. 4(e). Simply generating superpixel confidence features
within these superpixels, i.e., L = 1, may lead to undesired ar-
tifacts in the confidence estimation as shown in Fig. 4(g). Such

artifacts were successfully removed in the confidence map of
Fig. 4(h), estimated using confidence features augmented by
using both the SLIC superpixel and GMM clustering (L = 2).
We analyzed this in more depth using pixel-level confidence
features within SLIC superpixels. For the purpose of visu-
alization, we first apply the principal component analysis
(PCA) [43] to xi = [fTi , ix, iy]T for i ∈ Sm, which is a
10-dimensional feature vector, and then visualize them with
three dominant PCA coefficients only. We can clearly see
that the pixel-level confidence features are separated into two
distinct classes through the GMM clustering. This validates the
effectiveness of our approach that re-decomposes the SLIC
superpixels through GMM clustering using the set of pixel-
level confidence features. We found setting L = 2 yields the
best performance in the confidence estimation. More detailed
analysis will be given in experiments.

3) Confidence Classifier Learning: Finally, using the robust
augmented confidence feature g̃i and ground truth confidence
map Q∗i , we train the random regression forest R satisfying

R : g̃i → Q∗i . (6)

We will show that the proposed confidence feature outperforms
existing approaches.

C. Multi-Scale Confidence Map Aggregation (MCMA)

In order to further improve the quality of the confidence
map, we utilize the proposed confidence feature once again in
the testing phase by exploiting a multi-scale confidence map
aggregation scheme at both the pixel- and superpixel-level.
As in confidence feature generation described in Sec. III-B,
we leverage the correlation between the confidence features
and confidence values by assuming that pixels with similar
confidence features are likely to have similar confidence
values.

In a symmetric viewpoint of the confidence feature augmen-
tation, we propose an aggregation scheme on an estimated
confidence map Qi that reuses the weight of g̃i at both the
pixel- and superpixel-level. We first define the superpixel-level
confidence feature g̃n and confidence value Qn by averaging
within each superpixel S ′n such that g̃n =

∑
i∈S′

n
g̃i/|S ′n| and

Qn =
∑

i∈S′
n
Qi/|S ′n|, where |S ′n| is the number of pixels

within S ′n. In order to apply multi-scale aggregation, we first
define augmented confidence feature set gA and augmented
confidence value set QA as follows:

gA = {g̃i ∪ g̃n|i ∈ I, n ∈ 1, ..., NS′}, (7)

QA = {Qi ∪Qn|i ∈ I, n ∈ 1, ..., NS′}. (8)

K-NN nearest neighbors for all pixels and superpixels
are estimated using the K-nearest neighbor search [44]. The
confidence value is filtered by averaging the confidence values
of K-NN neighborhoods:

Q̃A
u =

∑
v∈Nu

QA
v /K, (9)

where u represents an index for all pixels and superpixels
within an image, and Nu is K-NN nearest neighborhoods for
u.



IEEE TRANSACTION ON IMAGE PROCESSING 6

Algorithm 1: Feature Augmentation for Learning Confidence Measure
Input: training set Ctrain = {ILi , IRi , D∗

i }, testing pairs {ILi , IRi }
Output: confidence map Q̂i, disparity map D̂i

/∗ Training Procedure ∗/
1 : Construct cost volume Ci,d and disparity map Di for Ctrain.
2 : Calculate ground truth confidence map Q∗

i by thresholding
the difference between Di and D∗

i .
3 : Construct the augmented confidence feature gi by pixel-level

confidence feature fi and superpixel-level confidence feature µn.
4 : Filter out the confidence feature gi to generate g̃i in Eq. (4).
5 : Train the random regression forest R using g̃i and Q∗

i in Eq. (6).

/∗ Testing Procedure ∗/
6 : Estimate Qi using confidence features g̃i and Q∗

i for testing stereo
pairs {ILi , IRi } through step 1-5.

7 : Compute Q̃i and Q̃n using multi-scale confidence map aggregation
on Qi and Qn in Eq. (9).

8 : Compute Q̂i with the weighted sum of Q̃i and Q̃n in Eq. (10).
9 : Compute refined disparity map D̂i using cost modulation based

optimization or GCPs-based optimization.

Our final confidence value Q̂i for each pixel i is then the
weighted sum of Q̃i and Q̃n as follows:

Q̂i = αQ̃i + (1− α)Q̃n, i ∈ S ′n, (10)

where α is the weight parameter between the pixel-level confi-
dence value and superpixel-level confidence value. Algorithm
1 summarizes the proposed confidence measure, consisting
of confidence feature augmentation (CFA) and multi-scale
confidence map aggregation (MCMA).

IV. VALIDATION

So far, we have explained the method for obtaining a reliable
confidence measure from the estimated initial disparity map.
In this section, we describe the validation of the effectiveness
of our confidence measure, for which we incorporated the
estimated confidence values into optimization schemes, by
using 1) cost modulation based optimization as in [7] and 2)
GCPs-based global optimization as in [16], [31].

A. Cost Modulation Based Optimization

Borrowed from [7], we incorporate the predicted confidence
value into stereo matching by modulating the initial matching
costs. When Ci,d denotes the matching cost of pixel i for a
disparity d, it is first modulated using Q̂i such that

Ĉi,d = Q̂iCi,d + (1− Q̂i)
∑

d
Ci,d/dmax. (11)

After modulating the initial cost volumes, the matching
costs of confident pixels remain unchanged and unreliable
pixels are flattened. Therefore, unreliable pixels can be eas-
ily dominated by more confident neighboring pixels in the
optimization step. To produce a final disparity map D̂i, the
modulated cost function Ĉi,d is then optimized using a global
approaches such as SGM [12] or belief propagation [45].

B. GCPs-Based Optimization

Our confidence measure can also be incorporated in GCPs-
based optimization. We first set pixels that have a higher
value than the threshold δ as the GCPs and then globally

TABLE I
EXPERIMENTAL CONFIGURATION.

Dataset MID [46] MPI [47] KITTI [48] ZED
Confidence
Feature Feature Selection 1 Feature Selection 2

Training Set MID 2005 KITTI 2012 (8 frame)

Testing Set MID 2006 MPI KITTI 2015 ZED stereo21 images 22 frames 200 frames
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Fig. 5. Average AUC of proposed confidence measure on MID [46], MPI
[47], and KITTI [49] benchmark, as varying (a) the number of superpixels, (b)
the number of sub-clusters M , (c) the number of K-NN nearest neighborhoods
K, and (d) the pixel-level weight α.

optimize the initial GCPs through an MRF-based propagation.
As mentioned in [16], there is a trade-off between density
and accuracy. Namely, with a low threshold, the density of
GCPs becomes high but the true negative (TN) accuracy is
degraded and vice versa. To prevent disparity errors from being
propagated in the optimization, we focus on increasing the
TN accuracy by using a relatively high threshold, although
this degrades the true positive (TP) accuracy. With the set of
GCPs, we define the energy function as in [50] to obtain the
final disparity map as follows:

E(D̂) = (D̂−WD)T (D̂−WD) + λD̂LD, (12)

where D and D̂ is the vector form of the estimated initial
disparity map Di and output disparity map D̂i, respectively.
The weight matrix W is composed with the component Wi,j

between pixel i and j is defined as

Wi,j =
miki,jexp(−‖Di −Dj‖2/σD)∑

j∈N 4
i
miki,jexp(−‖Di −Dj‖2/σD)

, (13)

where mi is a binary mask to mark the position of GCPs, i.e., it
is 1 for GCPs and 0 otherwise, and ki,j is the affinity between
the pixel i and j in the feature space of color intensity and
spatial location. σD is the standard deviation of the Gaussian
function, and N 4

i represents a local 4-neighborhood. L is
the sparse Laplacian for regularization where each element
Li,j = −ki,j for i 6= j and Li,i =

∑
j∈N 4

i
ki,j . With this
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TABLE II
THE AVERAGE AUC VALUES FOR MID [46], MPI [47], AND KITTI [49] DATASET. THE AUC VALUE OF GROUND TRUTH CONFIDENCE IS MEASURED AS

‘OPTIMAL’. THE RESULT WITH THE LOWEST AUC VALUE IN EACH EXPERIMENT IS HIGHLIGHTED.

Methods MID [46] MPI [47] KITTI [49]
Census Census Census MC-CNN

w/SGM w/CVF w/SGM w/CVF w/SGM w/CVF w/CBCA
Haeusler et al. [19] 0.0530 0.0512 0.0532 0.0499 0.0556 0.0460 0.0124
Spyropoulos et al. [16] 0.0485 0.0468 0.0482 0.0454 0.0503 0.0421 0.0124
Park et al. [7] 0.0456 0.0439 0.0450 0.0424 0.0469 0.0348 0.0108
Gouveia et al. [28] 0.0706 0.0684 0.0700 0.0672 0.0748 0.0451 -
CFA (Ours) 0.0416 0.0399 0.0409 0.0387 0.0429 0.0288 0.0097
MCMA (Ours) 0.0433 0.0416 0.0427 0.0402 0.0446 0.0302 0.0100
CFA+MCMA (Ours) 0.0403 0.0386 0.0396 0.0374 0.0414 0.0269 0.0096
Optimal 0.0340 0.0322 0.0335 0.0312 0.0348 0.0166 0.0038
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Fig. 6. Sparsification curve for (a) Bowling2, (b) Flowerpots, and (c) Lamp-
shade1 are selected images from MID [46], (d) frame 6, (e) frame 17, and
(f) frame 155 are selected images from KITTI dataset [49]. The sparsification
curve for a ground truth confidence map is described as ‘optimal’.

simple quadratic optimization scheme, we obtain a highly
reliable disparity map.

V. EXPERIMENTAL RESULTS

A. Experimental Settings

In this section, we compare the proposed method with
conventional learning-based approaches [7], [16], [19], [28] on
various dataset [46], [47], [49]: Middlebury 2006 (MID), MPI-
Sintel (MPI), KITTI 2015 (KITTI), and ZED, which is de-
scribed below. We also apresent an anlaysis of the performance
gain resulting from the two key components of our method
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Fig. 7. AUC values of (a) census-based SGM and (b) census-based CVF for
KITTI dataset [49]. We sort the AUC values in the ascending order according
to proposed AUC values. The ‘optimal’ AUC values are calculated using
ground truth confidence map.

(CFA and MCMA). To compute a raw matching cost, we
used a census transform with a 5× 5-sized local window and
the matching cost with a convolutional neural network (MC-
CNN) method [11]. ‘KITTI 2015 fast network’ provided by the
author’s website [51] was used for computing the MC-CNN.
For the census transform, we applied SGM [12] or CVF [13]
on the estimated cost volume. For the SGM, we set P1 = 0.008
and P2 = 0.126 as in [7]. For the CVF, we performed the
cost volume filtering using the guided filter [33] of a 19×19-
sized local window and regularization parameter ε = 0.012

as recommended in [13]. To produce the MC-CNN results,
following the original MC-CNN paper in [11], we performed
the cost aggregation using an adaptive cross window (CBCA)
[52]. Note that the MC-CNN is a top-ranked method in the
KITTI benchmark [48], and we demonstrate that the proposed
confidence measure can be used to improve the quality of
such a top-performing stereo matching algorithm through a
post-processing step. For SLIC superpixels, we decompose the
image into a different number of superpixels for each dataset:
500 for MID and 2000 for MPI, KITTI, and ZED. In MCMA,
we set K = 20. For GCPs-based optimization, we set σD = 10
and δ = 0.7 using cross-validation for which we divided the
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(a) (b) (c) (d) (e) (f) (g)

Fig. 8. The confidence maps and refined disparity maps of Middlebury dataset [46] using (from top to bottom) census-based SGM+mod., SGM+GCPs,
CVF+mod., and CVF+GCPs. (a) color images and initial disparity maps, refined disparity maps with confidence maps estimated by (b) conventional post-
processing (LRC+WMF), (c) Park et al. [7], (d) Gouveia et al. [28], (e) CFA (Ours), (f) CFA+MCMA (Ours), and (g) ground truth confidence map.

training and testing dataset into three groups, performed three-
fold cross-validations, and then estimated the parameters that
provide the highest performance. Random forests were trained
comprising 50 trees in regression mode, using the Matlab
TreeBagger package [53].

For evaluation, we divided the dataset into the MID [46]
and MPI [47] dataset taken (synthesized) under carefully-
controlled environments, and real-world dataset as KITTI [49]
and ZED stereo dataset that we captured. ZED stereo dataset
was built with ZED stereo camera [54], where the resolution of
the stereo image pairs is full HD (1920×1080). We captured

the dataset for outdoor environment, such as a playground,
road, and building, etc. For MID and MPI, we trained the
classifier using 6 images in the Middlebury 2005 dataset [46]
and for KITTI and ZED stereo dataset, we trained the classifier
using 8 frames in KITTI 2012 dataset [49] as in [7]. The
experimental configuration is summarized in Table I.

To evaluate the performance of the confidence measures
quantitatively, we used the sparsification curve and its area
under curve (AUC), as in [7], [16], [19]. The sparsification
curve draws the bad pixel rates while successively removing
the pixels in descending order of confidence measure values in
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(a) (b) (c) (d) (e) (f)
Fig. 9. The confidence maps and refined disparity maps of MPI dataset [47] using (from top to bottom) census-based SGM+mod., SGM+GCPs, CVF+mod.,
and CVF+GCPs. (a) color images and initial disparity maps, refined disparity maps with confidence maps estimated by (b) Park et al. [7], (c) Gouveia et al.
[28], (d) CFA (Ours), (e) CFA+MCMA (Ours), and (g) ground truth confidence map.

the disparity map, thus it is possible to observe the tendency
of prediction errors. AUC quantifies the ability of a confidence
measure to estimate correct matches. The higher the accuracy
of the confidence measure, the lower the AUC value. To
evaluate the quantitative performance, we also measured the
average bad matching percentage (BMP) as in [46], [47].

B. Parameter Sensitivity Analysis

We analyzed the performance of the proposed confidence
measure while varying the associated parameters, including
the number of superpixels MS, the number of sub-clusters L
in CFA, the number of K-NN nearest neighborhood K, and the
parameter α weighting between the pixel- and superpixel-level
confidence maps in MCMA.

We evaluated the average AUC for different numbers of
segments in superpixels as shown in Fig. 5(a). If the number
of superpixels is too small, diferent regions may be mixed
in a single superpixel, producing a low AUC. We segmented
an input image into a set of superpixels that contained about
200 pixels on average. The average AUC values for varying
L are shown in Fig. 5(b). If L is 1, we generated a single
superpixel-level confidence feature in Sm, which may contain
inaccurate segmentation errors and occlusion outliers. We
found that setting L = 2 achieves the best results. As the
value of L increases, the AUC value is degraded because of
over-fragmented clusters. The average AUC values for varying
value of K are shown in Fig. 5(c). The AUC value decreases

as the values of K increases and converges when K is 20.
We set K as 20 in all experiments. The average AUC value
for varying values of α are shown in Fig. 5(d). As the value
of α increases, there is a possibility of missing the spatial
coherency. We set α as 0.4 in all the experiments.

C. Confidence Measure Analysis

We compared the AUC with conventional learning-based
approaches [7], [16], [19], [28]. The optimal AUC can be
obtained with a ground truth confidence map. Sparsification
curves for selected frames in the MID and KITTI datasets are
shown in Fig. 6. The results show that the proposed confidence
estimator exhibits a better performance than conventional
per-pixel classifiers [7], [16], [19] and a superpixel-based
classifier [28]. We used census-based SGM [4], [12] and
census-based CVF [4], [13] to obtain the initial disparity maps.
The average AUC value with census-based SGM and census-
based CVF for MID, MPI, and KITTI is summarized in Table
II. The table shows that in all cases the confidence maps
estimated with proposed method (CFA + MCMA) have the
lowest AUC values, as compared to the per-pixel classifiers
[7], [16], [19]. Fig. 7 describes the AUC values, which are
sorted in ascending order, for the KITTI dataset. These results
demonstrate that the proposed approach outperforms other
methods for predicting mismatched pixels. When either CFA
or MCMA are applied, our method outperforms conventional
confidence measure methods [7], [16], [19], [28], and the
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(a) (b) (c) (d)
Fig. 10. The confidence maps and refined disparity maps of KITTI dataset [49] using (from top to bottom) census-based SGM+mod., SGM+GCPs, CVF+mod.,
and CVF+GCPs. (a) color images and initial disparity maps, refined disparity maps with confidence maps estimated by (b) conventional post-processing
(LRC+WMF), (c) Park et al. [7], and (d) CFA+MCMA (Ours).

TABLE III
THE BMP OF THE RESULTANT DISPARITY MAP FOR MIDDLEBURY [46], MPI [47], AND KITTI [49] DATASET. THE BAD PIXEL ERROR RATE OF THE

REFINED DISPARITY MAP USING GROUND TRUTH CONFIDENCE IS MEASURED AS ‘OPTIMAL’. THE RESULT WITH THE LOWEST BAD PIXEL ERROR IN EACH
EXPERIMENT IS HIGHLIGHTED.

Methods
Middlebury [46] MPI-Sintel [47] KITTI [49]

Census Census Census
w/SGM w/SGM w/CVF w/CVF w/SGM w/SGM w/CVF w/CVF w/SGM w/SGM w/CVF w/CVF
+mod. +GCPs +mod. +GCPs +mod. +GCPs +mod. +GCPs +mod. +GCPs +mod. +GCPs

Initial disparity 20.43 20.43 17.64 17.64 19.54 19.54 13.82 13.82 23.50 23.50 15.21 15.21
LRC + WMF 15.61 15.61 13.80 13.80 16.81 16.81 12.37 12.37 16.77 16.77 11.74 10.74
Haeusler et al. [19] 12.35 14.87 12.55 11.23 12.90 13.04 10.96 10.43 10.21 9.36 10.68 9.98
Spyropoulos et al. [16] 13.50 15.37 12.30 10.99 12.77 11.20 11.02 10.50 9.90 8.91 10.21 9.00
Park et al. [7] 12.70 15.35 11.25 10.76 12.23 10.69 10.94 9.92 9.82 7.95 8.85 8.81
3DV [28] 14.20 15.78 14.32 13.23 13.48 15.15 12.48 11.86 12.49 11.56 10.89 9.10
CFA (Ours) 10.07 9.68 9.28 10.29 12.01 11.55 10.94 8.00 9.69 7.15 8.91 7.87
MCMA (Ours) 11.99 10.91 10.52 11.75 11.95 9.21 10.85 9.07 9.79 7.32 8.94 8.81
CFA+MCMA (Ours) 9.87 9.19 9.27 9.32 11.78 8.61 10.83 7.49 9.61 7.12 8.83 7.80
Optimal 7.46 4.20 6.92 3.64 7.96 6.30 8.96 5.31 7.75 2.39 7.23 2.51

best performance is achieved both components are applied,
as expected. This validates the effectiveness of the proposed
aggregation scheme.

D. Stereo Matching Analysis

To verify the robustness of the confidence measures, we
refined the disparity map using the confidence maps estimated
by several confidence measure approaches including ours. For
refining the disparity maps, we used two different schemes
described in Sec. 4, which are cost modulation (mod.) based

optimization [7] and GCPs-based optimization (GCPs) without
additional post-processing to clearly show the performance
gain achieved by the proposed confidence measure. To evaluate
the quantitative performance, we measured an average bad
matching percentage (BMP) [46] for the MID [46], MPI
[47], and KITTI [49] datasets. Table III shows the BMP
for MID [46], MPI [47], and KITTI [49] dataset. For MID,
since there are occluded pixels in ground truth disparity map,
which we excluded, and computed the BMP only for visible
pixels. The KITTI benchmark provides a sparse ground truth
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(a) (b) (c) (d)
Fig. 11. The confidence maps and refined disparity maps of KITTI dataset [49] using (from top to bottom) MC-CNN [11] method. (a) color images and
initial disparity maps, refined disparity maps with confidence maps estimated by (b) Haeusler et al. [19], (c) Park et al. [7], and (d) CFA+MCMA (Ours).

disparity map and we evaluated the BMP only for sparse
pixels with the ground truth disparity values. The results of
extensive experiments show that the proposed method achieves
the lowest BMP.

Fig. 8, Fig. 9, and Fig. 10 show the disparity maps refined
with the confidence maps estimated from the existing per-pixel
classifiers [16], [7] and the proposed method. GCPs-based
optimization was used to refine the disparity maps for the MID
[46], MPI [47], and KITTI [49] datasets. It is clearly shown
that the erroneous matches are reliably removed using the
proposed confidence measure. For the KITTI benchmark [49],
erroneous disparities usually occur in textureless regions (sky
and road), and conventional approaches [7], [16] do not detect
uncorrect pixels and thus they affect the matching quality of
the subsequent disparity estimation pipeline. In contrast, the
proposed method can detect mismatched pixels more reliably.

Furthermore, when the proposed confidence measure is
combined with a cost computation method, such as MC-CNN
[51], it achieves a significantly improved disparity estima-
tion performance. Fig. 11 shows the qualitative results that
refined the initial disparity maps obtained using MC-CNN
cost computation for the KITTI benchmark. Table IV shows
the quantitative evaluation for the KITTI benchmark using
the MC-CNN based approach. The refined disparity maps
with GCP-based optimization demonstrate the outstanding
performance of the proposed confidence estimation method
as compared to the per-pixel confidence classifier [7].

TABLE IV
THE AVERAGE BMP OF THE RESULTANT DISPARITY MAP FOR KITTI [49]

DATASET. INITIAL DISPARITY IS OBTAINED WITH MC-CNN [11] BASED
APPROACH. THE BMP OF THE REFINED DISPARITY MAP USING GROUND

TRUTH CONFIDENCE IS MEASURED AS ‘OPTIMAL’. THE RESULT WITH THE
LOWEST BMP IN EACH EXPERIMENT IS HIGHLIGHTED.

Methods KITTI [49]
MC-CNN w/CBCA + GCPs

Initial disparity 5.6937
Spyropoulos et al. [16] 5.5361
Park et al. [7] 5.2239
CFA (Ours) 4.2621
MCMA (Ours) 4.8347
CFA+MCMA (Ours) 4.2477
Optimal 2.1760

For the ZED dataset, we performed a subjective evaluation
only, since no ground truth disparity map exists. Fig. 12 shows
the qualitative results for the ZED dataset. The refined dispar-
ity maps with cost modulation and GCPs-based optimization
also support the outstanding performance of the proposed
method when applied to the challenging outdoor database.

VI. CONCLUSION

In this study, a novel approach for learning-based confidence
measure was proposed. It is assumed that the confidence
features and resulting confidence maps are smoothly varying
in the spatial domain. We first demonstrated that a confidence
feature augmentation that imposes spatial coherency on the
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(a) (b) (c) (d) (e)
Fig. 12. The resulting disparity map of ZED dataset (from top to bottom) census-based SGM + mod., SGM + GCPs., CVF + mod., and CVF + GCPs. This
dataset is captured in natural enviornments, thus frequently having illumination variations between stereo pairs. (a) left color image, (b) right color image, (c)
initial disparity maps, refined disparity maps using (d) confidence measured by Park et al. [7], and (e) confidence measured by the proposed method.

confidence features and the resulting confidence maps can
increase the performance of the confidence estimation. The
confidence map was further improved through multi-scale
confidence map aggregations. The stereo algorithms using the
proposed confidence estimation method exhibited accurate and
robust results for public datasets as well as for challenging
outdoor environments. As future work, we will study the
confidence feature that encodes the spatial coherency in a deep
convolutional neural network framework.
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