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ABSTRACT

Adaptive normalized cross-correlation (ANCC) cost function works
well between images under photometric distortions, but its heavy
computational burden often limits its applications. To overcome this
limitation, this paper proposes a robust and efficient computational
framework, called ANCC flow, designed for establishing dense cor-
respondences between images under severe photometric variations.
We first simplify the weight of ANCC in an asymmetric manner by
considering a source image weight only. It is then efficiently com-
puted by applying constant-time edge-aware filters without loss of
its matching accuracy. Additionally, to deal with a large discrete
label space effectively, which is a challenging issue in flow field es-
timations, we propose a randomized label space sampling strategy
similar to PatchMatch filer (PMF) optimization. The robustness of
the asymmetric ANCC and the cost filter is further enhanced through
an evolving weight computation, where a flow field computed in a
previous iteration is utilized to build current edge-aware weights.
Experimental results demonstrate the outstanding performance of
ANCC flow in many cases of dense correspondence estimations un-
der severe photometric and geometric variations.

Index Terms— adaptive normalized cross-correlation, Patch-
match filter, dense correspondence, stereo matching

1. INTRODUCTION

In many computer vision and computational photography applica-
tions, images captured under different imaging modalities are pop-
ularly used to overcome their inherent limitations, such as flash and
no-flash images [1], color and dark flash images [2], blurred images
[3, 4], and images under different radiometric conditions [5].

To realize these tasks, establishing dense correspondences be-
tween image pairs across photometric variations is an essential prob-
lem. Conventional methods for estimating depth [6] or optical flow
[7, 8] fields, in which input images are acquired in a similar imag-
ing condition, have been dramatically advanced in recent studies.
In these approaches, a matching fidelity term is not a critical issue,
as they assume that multiple images share a similar visual pattern.
Instead, they focus on powerful labeling optimizers, e.g., graph-
cut (GC) [9], PatchMatch [10], cost volume filter [11], non-rigid
dense correspondence (NRDC) [12], and Patchmatch filter (PMF)
[13]. However, for images taken under different modality condi-
tions, they cannot deal with severe photometric variations without
suitable matching cost functions or descriptors [14]. In those cases,
robust cost functions designed to deal with modality variations are
one of the most important issues to yield a reliable matching quality
[15]. Unfortunately, conventional gradient-based descriptors such
as scale invariant feature transform (SIFT) [16] and DAISY [17], as
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Fig. 1. Comparison of ANCC flow with existing approaches. (a), (b)
stereo images, and depth maps with (c) NCC+GC, (c) ANCC+GC,
and (d) ANCC flow. ANCC flow runs 60x faster than ANCC+GC
while providing a lower error rate (5.11% vs. 12.24%).

well as intensity comparison-based binary descriptors such as binary
robust independent elementary features (BRIEF) [18], have shown a
limited performance in matching under photometric variations [15].

To overcome these limitations, a number of methods have been
proposed, and could be categorized as feature-based and area-based
approaches. In feature-based approaches, several methods tried to
reformulate existing descriptors [19], but they showed limitations
similar to existing descriptors. Schechtman and Irani introduced lo-
cal self-similarity (LSS) descriptor [20], and achieved impressive re-
sults in object detection and retrieval. Based on the LSS [20], several
methods applied it to multi-modal registration problems [21, 22, 23,
15]. These feature-based approaches have shown satisfactory results
in a robust manner, but their discriminative power is limited, leading
to difficulty of accurate matches especially on boundary regions.

Among area-based approaches, mutual information (MI)-based
cost function is used for a registration of multi-modal medical im-
ages [24]. As a pioneering work, the cross-correlation (CC)-based
cost function has been popularly used for multi-modal image corre-
spondences, e.g., normalized CC (NCC) [6], adaptive NCC (ANCC)
[25], Mahalanobis distance CC (MDCC) [26], and robust selective
normalized CC (RSNCC) [27]. Although they provide satisfactory
results, when the search space is large, their computational time is
also inevitably high [15]. When incorporated with an global energy
function and solved by a global optimizer [9], their complexity fur-
ther dramatically increases.

In this paper, our approach is focusing on the ANCC cost func-
tion [25], which has shown satisfactory results on correspondences
under photometric variations, but has inherently high computational
burdens. We reformulate ANCC [25] in a robust and efficient man-
ner, and further combine it with a cost volume filtering-based opti-
mization [11, 13]. Specifically, our approach approximates ANCC
[25] by considering a source guidance weight only, which enables
us to apply constant time edge-aware filters (EAF) [28] for a fast
computation. To reduce a computational burden for large search
spaces, we further employ PMF-like random search strategy. In the
optimization procedure, by leveraging evolving guidance weights in
computing the cost function and cost volume filter, more reliable



and robust flow fields are estimated as the iterations. Unlike other
methods, our ANCC flow can be easily extended to overcome geo-
metric variation problems between image pairs. In experiments for
image pairs under photometric and even geometric variations, our
ANCC flow outperforms conventional feature-based and area-based
approaches both quantitatively and qualitatively.

2. THE ANCC COST FUNCTION AND ITS LIMITATIONS

Let us define an image as f; : T — R for pixel ¢ = [z, y:]”, where
Z C N? is a discrete image domain. Given a pair of images f; and
f1, a dense correspondence estimation aims to assign each pixel i a
label I; € £ = {l = [u,v;]"}, satisfying that fiu, = I

Unlike conventional cost measures [6], an adaptive normalized
cross-correlation (ANCC) cost function deals with photometric vari-
ations between multiple images effectively, by leveraging its edge-
aware subtraction and normalization [25]. Given a pixel ¢ and its
label candidate [, the ANCC cost function ® (4, !) is defined between
two patches F; for pixel 4 of source image f* and F; for correspond-
ing pixel j (where j = i — I;) of target image f* as
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where i’ € F; and j' € F;, and weighted averages on F; and JF; are
defined such that G; = >, w; i f» and G; = Zj/ wj g0 fi1s Wier
is the normalized adaptive weight of a support pixel i’ defined on
the image. Based on the cost ®(i, ) for all pixel  and all candidate
I € L, the final flow fields are generally inferred by minimizing the
energy function with a global optimizer, e.g. graph-cut (GC) [9].
Although it provides outstanding performances, it has inherent
limitations to be applied to a general dense correspondence scenario.
Due to its computation of edge-aware weights w; ;» and w; ;/, a com-
putational time dramatically increases as a large size of support win-
dow |F| and search space |£| [25]. Furthermore, the edge-aware
weight defined on a color image only leads to texture copy problems
from the color image [29] and building non-reliable cost volumes,
which limits the matching performance.

D(1,1)

3. THE ANCC FLOW
3.1. Overview of Our Approach

Our ANCC flow formulates a more robust energy function for flow
field estimations by intelligently combining the ANCC cost function
[25] and cost volume filter [11], which is solved very efficiently in
an unified computational framework (Sec. 3.2). Unlike conventional
ANCC [25], our approach first approximates it as only considering
a source guidance image, which enables us to apply fast EAF very
efficiently without performance loss (Sec. 3.3.1). Under constructed
cost volumes, a cost volume filtering for the optimization is followed
(Sec. 3.3.2), where the weights for adaptive support aggregation is
also re-used as one from the cost computation. To overcome a com-
putational bottleneck from a large label search space, we propose
the PMF-like search space sampling scheme. In each iteration, es-
timated flow fields is considered as a new guidance image for the
asymmetric ANCC cost computation and the cost filtering, which si-
multaneously enhances a matching quality and boosts a convergence
(Sec. 3.3.2). Fig. 2 illustrates the ANCC flow framework.

3.2. Our Computational Model

Similar to cost volume filter [11] or PMF [13], we employ a local
window-based cost aggregation scheme to provide a reliable match-
ing performance with a very low computational time. In particular,
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Fig. 2. Framework of ANCC flow. Through an asymmetric ANCC,
PatchMatch filter-like optimization, and evolving guidance aggrega-
tions, it computes a reliable flow field very efficiently.

to infer I; for pixel ¢, our approach first builds a more robust cost
volume using asymmetric ANCC cost function such that

=3,  wo(1-9(0), @)

where F; is local neighborhood for cost aggregation, which is same
as that in (1), and it is computed for all i € Z and | € L.

With the cost volume C(z, 1), final flow field can be estimated as
winner takes-all (WTA) optimization as follows:

l; = argmin; ~C(i,1). 3)

In contrast to existing cost filtering-based methods [11, 13], our
computational model is mainly different in two aspects. First, asym-
metric ANCC cost function ®'(3,1) is utilized, which features that
it only considers a source guidance weight function with evolving
guidance settings. Namely, the edge-aware weights are computed
using the previously estimated flow field, which will be described
in Sec. 3.3.1. Second, cost C(3,1) is aggregated by a cost filter
with evolving guidance weight wi > which will be described in Sec.
3.3.2. Note that an evolving guldance concept is first introduced in
[30], where its robustness is investigated in the image filtering. Our
approach is first attempt to apply it in stereo matching.

Our computational model for ANCC flow is designed so that
very efficient computation is feasible. A straightforward computa-
tion of (2) might be extremely time-consuming, because its com-
plexity depends on |F| and |£]|. In the following, we introduce an
efficient computation scheme for minimizing the energy in (2).

3.3. Efficient Computational Solver

To reduce the computational dependency of |F|, we first reformu-
late ANCC as a source guided version, which enables us to apply
fast EAF [28]. Similar to PMF [13], to reduce the computational de-
pendency of | £|, our approach adopts the superpixel-based inference
model for computing cost and cost volume filter, simultaneously.

3.3.1. Asymmetric ANCC cost computation with evolving guidance

To efficiently handle large computational burden for weights in (1),
we simplify it by considering only the weights w; ; from the source
patch F; so that a fast computation using a fast EAF is feasible. It
should be noted that such an asymmetric weight approximation has
been also used in cost aggregation for stereo matching [11].

Our asymmetric ANCC cost function is first defined as
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where G; ; = Zi,’j, w; i f7, which means a weighted average of
fj» € F; with a guidance image f;y € F;.



Algorithm 1: The ANCC Flow Framework

Input : image pair ff and f;.

Output : dense correspondence field [; € L.

1 : Define the label space £ as in Sec. 3.4

2 : Decompose the image f; into superpixels Sy.

3 : Assign an initial label I* randomly to each superpixels Sy, .
while not converged do

form =1: M do

4: Propagate a set of labels £, randomly sampled from
neighboring segments to the segment Sy,.
5: Compute gf " and gf; for all pixel 4.
for!l € £, do
6 : Construct a cost slice f; such that j =i — [;.
7 Compute Qf;-j, gf;-, and Qf;z with [*.
8 Estimate &'~ (3,1) using (4).
9 Estimate C(3, [) using (2) with [*.
end for
10 : Update an intermediate flow {* with WTA in (3).
11: Randomly sample g € Sy, for defining £,.
12: Update C(%, 1) by following Step 6 — 9 forall [ € L,.
13: Update an intermediate flow {* with WTA in (3).
end for
end while

With some arithmetic derivations, (4) can be decomposed as
Giij —Gi-Gij
)
gﬂ - g,? : gi,jz - gz]

where G2 = 3", wi i 7, Giij = > o wiir fir i, and G o =
Z v g Wi Z«f Similar to efficient computation scheme in [15], (5)
can be computed very efficiently using a constant-time EAF [31, 28].
Furthermore, to improve a robustness and discriminative power,
our final cost function makes use of an evolving guidance aggrega-
tion in a way that the previously estimated flow field is considered
as a guidance for the adaptive support aggregation in (5) such that

Qﬁ =Gl Gl
'~ T
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where G/ ;;, Gla, gl 2> G/, and G! ; are computed with wZ 7> Which
is defined as edge aware weights from previously estimated label .

3.3.2. PMF based cost optimization

&)

Q)

Our asymmetric ANCC cost in (6) can be computed very efficiently
compared to original ANCC in (1), but its computational time still
depends on search range size |£|. To overcome this limitation, we
employ label search space sampling strategy in PMF [13]. In the
optimization, for the evolving guidance aggregation, our approach
utilizes the previous flow field to construct edge-aware weights. We
first decompose the image f as superpixel Sy = {Sm|U,, S
ZandVm # n, Sm(\Sn # I, m € 1,..., M}, where M is the
number of superpixels. A random label is initially assigned to each
node, and we iterate two search strategies in an interleaved manner,
i.e., neighborhood propagation and random search.

In neighborhood propagation step, for a current segment S,,,, we
denote its set of spatially adjacent neighbors as {Sk }, and candidate
pixels p € Sy are then randomly sampled from every neighboring
segment. A set of current best labels £, = {l,} is then retrieved.
Forl € L, an asymmetric ANCC cost in (5) and cost volume filter-
ing in (2) are computed sequentially. After the preceding propaga-
tion step, in random search step, we randomly pick a reference pixel
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Fig. 3. Convergence analysis of the ANCC flow. By employing a
evolving guidance aggregation, its matching performance is highly
improved and boosted as increasing the iterations.

. . SIFT NCC ANCC ANCC ANCC
1mage stze flow w/GC  w/GC flowt flows
463 x 370  32.1s  30.2s 305.1s 235.2s 5.1s

Table 1. Evaluation of computational complexity. The brute-force
and efficient computation of our ANCC flow are denoted as 1 and {,
respectively. Our approach runs 60X faster than ANCC w/ GC.

q € S to promote the label propagation within a segment. After
defining a set of labels £, = {l4}, (5) and (2) are computed again
for pixels i € Sp,. After each iteration, the intermediate flow field
is inferred using (3), and is applied to next iteration as an evolving
guidance aggregation, which will boost matching performances on
each iteration. Algorithm 1 summarizes our ANCC flow.

3.3.3. Effects of evolving guidance aggregation

Fig. 3 shows convergence analysis of ANCC flow. In order to ana-
lyze only effects of evolving guidance aggregations in cost computa-
tion and cost aggregation, not PMF itself [13], disparity maps from
the cost computation with WTA and its corresponding cost filtering
with WTA are estimated with fixed £, and £,. As shown in Fig. 3,
an evolving guidance aggregation dramatically improves matching
performances in cost computation and cost filtering, simultaneously.
It further enables boosting very fast convergence.

3.4. Extension to Geometric-Invariant Flow Field Estimation

By properly defining the search label space [; € £, our ANCC flow
can be applied to general dense correspondence problems. For stereo
matching, [; is defined to assign a disparity d (u; = d) to pixel 4,
where v = 0. For optical flow estimation, /; is defined to assign a
2-D vector field for [u;, v;]. More challengingly, for general image
matching scenarios, where there exist not only translation fields but
also geometrically variations fields, e.g., scale and rotation, it is hard
to directly define /; due to too many possible candidates. Instead, we
employ a randomized global transform approach [32]. Specifically,
based on initial sparse feature matching and RANSAC-based global
transform inference [33], we estimate global transform candidates
T between multiple images, which can deal with scale and rotation
field very efficiently. Using T, search label spaces are defined in
such a way that [; = T(4) for all ¢, where T (¢) means that pixel ¢
is applied by global transform T.. In this case, |£| = |T|.

3.5. Computational Complexity Analysis

Given an image size |Z|, the label space size |£|, the number of it-
eration K, and the aggregation window size ||, the computational
complexity the ANCC flow framework on the brute-force implemen-
tation becomes O ( ). With efficient computation model
with fast constant-time EAF, our approach removes the complexity
dependency on the aggregation window size | F|, i.e., O(K|Z||L]|).




Fig. 4. Comparison of disparity estimations for image pairs across
illumination ‘1/3” and exposure ‘0/2’ [6]. (from top to bottom) image
pairs, depth maps from cost filter [11], NCC [6], ANCC [34], SIFT
[16], DAISY [17], DASC [15], ANCC flow, and ground truth.
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Fig. 5. Average bad-pixel error rate on the Middlebury benchmark
[6] with (a) illumination and (b) exposure variations.

Furthermore, by employing PMF-like inference model to reduce the
effect of large search spaces, our final computational complexity can
be dramatically reduced to O(|Z|log|L]).

4. EXPERIMENTAL RESULTS AND DISCUSSION
4.1. Experimental Environments

In experiments, the ANCC flow was implemented with the following
same parameter settings for all datasets. For an EAF, we employed
the guided filter (GF) [28] with radius » = 9 and the smoothness
parameter € = 0.009. The number of superpixels is set to about 500
using the SLIC [35]. We implemented the ANCC flow in C++ on
Intel Core 17-3770 CPU at 3.40 GHz. The computational complexity
of ANCC flow compared to other methods was evaluated in Table 1.

ANCC flow was compared to state-of-the-art matching methods,
e.g., cost filter [11], PatchMatch [10], and SIFT [16], DAISY [17],
and DASC [15] combined with SIFT flow [36] optimization. Fur-
thermore, we compared our approach with NCC [6] and ANCC [34]
with GC [9] optimization. For geometric-invariant flow estimations,
we evaluated SID [37], SegSID [37], and SSF [38].

4.2. Middlebury Stereo Benchmark

We first evaluate our ANCC flow framework in Middlebury stereo
benchmark containing illumination and exposure variations [6]. In
the experiments, the illumination (or exposure) combination ‘1/3’
indicates that two images were captured under the 1% and 37 il-
lumination (exposure) conditions. For a quantitative evaluation, we
measured the bad-pixel error rates in non-occluded areas [6].

Fig. 4 shows depth maps for severe illumination and exposure
variations, and Fig. 5 shows average bad matching error rates. As ex-

ANCC  SIFT ANCC
w/GC Aow SID SegSID  SSF Aow
LTA  39.2 34.2 39.1 34.0 29.7 16.3

Table 2. Average LTA error rates on DIML benchmark [15].

(@) (b) © (d) (e)
Fig. 6. Comparison of qualitative evaluation on DIML benchmark
[15]. (a),(b) image pairs, warped color images from correspondences
of (c) SIFT flow [36], (d) SID [37], and (e) ANCC flow.

pected, without robust cost functions, the cost filter [11] and Patch-
Match [10] cannot provide reliable correspondence performances.
Matching performances of SIFT flow [36] combined with robust cost
functions [17, 18, 20, 15] are limited on edge-discontinuity regions
since they provide limited discriminative power. Furthermore, their
computational time was very high. Unlike these conventional meth-
ods, our ANCC flow achieved the best results both quantitatively
and qualitatively. By using an leveraging guidance aggregation, the
matching performance of ANCC flow was highly enhanced.

4.3. DIML Benchmark

We then evaluate our ANCC flow framework in recently published
DIML benchmark [15], captured as 10 geometry image sets by com-
bining geometric variations of viewpoint, scale, and rotation, and
each image set consists of images taken under 5 different photomet-
ric variation pairs including illumination, exposure, flash-noflash,
blur and noise. To evaluate the performance quantitatively, we com-
puted the label transfer accuracy (LTA) [39, 15].

Fig. 6 shows qualitative evaluation results, and Table 2 shows
average LTA error rates for all combinations. SIFT flow-based ap-
proaches [17, 18, 20, 15] cannot provide reliable matching qualities
under geometric variations. Geometry-invariant methods, such as
SID [37], SegSID [37], and SSF [38], showed robustness to geo-
metric variations to some extent, but they showed limited perfor-
mance on photometric variations. Contrarily, through optimally de-
fined flow field candidates, our ANCC flow provided the robustness
for both photometric and geometric variations.

5. CONCLUSION

The adaptive normalized cross-correlation (ANCC) flow framework
has been proposed for establishing dense correspondences between
images taken under different imaging modalities. Its high perfor-
mance of a matching quality and a computational time in comparison
to state-of-the-art approaches can be attributed to greater robustness
of asymmetric ANNC cost with evolving guidance aggregations,
PMF-like optimization, and its efficient computational scheme. The
ANCC flow has been validated on an extensive set of experiments
that cover photometric and geometric variations. In future work, it
can be applied to challenging non-rigid image deformations.
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