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ABSTRACT

Local feature matching is a fundamental step for many computer
vision applications. Recently, binary feature transforms have been
popularly proposed to improve the computational efficiency while
preserving high matching performance. However, it is sensitive to
noise and geometrical distortion such as affine transformation. In
this paper, we propose ABFT framework, composed of a noise ro-
bust feature detection and affine invariant binary feature description
based on a structure tensor space. Experimental results show that
ABFT outperforms other state-of-the-art feature transforms in terms
of the repeatability, recognition rate, and computational time.

Index Terms— Feature matching, binary feature, anisotropic,
structure tensor.

1. INTRODUCTION
Local feature matching for finding a correspondence of the salient
image regions is a fundamental step for many computer vision appli-
cations such as motion detection, 3-D modeling, panorama stitching,
object tracking and object recognition [1].

Many robust algorithms have been proposed for the reliable
matching in many literatures. The Scale Invariant Feature Trans-
forms (SIFT) proposed by Lowe [1] has been the most popular
approach due to high robustness to many of the variations and dis-
tortions. For the computational efficiency, Bay et al. proposed the
Speeded-Up Robust Features (SURF) [2] which approximates to
SIFT and outperforms other methods. Although these conventional
algorithms show the competitive performance, they are difficult to
be applied for the mobile applications or low-power devices be-
cause of the high computational complexity. Recently, Rosten et
al. proposed the Features from Accelerated Segment Test (FAST)
feature detector [3] by intensity segment test and Calonder et al. pro-
posed the Binary Robust Independent Elementary Features (BRIEF)
feature descriptor [4] by simple intensity difference tests. By com-
bining FAST detection and BRIEF description, the binary feature
transforms have been popularly proposed in order to overcome the
computational limitation of conventional algorithms [5]. In these
spectrums, Rublee et al. proposed the Oriented FAST and Rotated
BRIEF (ORB) [6] which addresses the rotation variant problem of
BRIEF. Leutenegger et al. also proposed the Binary Robust In-
variant Scalable Keypoints (BRISK) [7] which is scale-space FAST
detector in combination with bit-string descriptors. Alahi et al. pro-
posed the Fast Retina Keypoint (FREAK) [8] inspired by the human
visual systems.

However, the performance of binary feature transforms is highly
affected by the conditions imposed by many real applications since
it is sensitive to noise and geometrical distortion such as affine trans-

formation. In this paper, we propose a novel feature matching frame-
work combining a noise robust feature detection and affine invariant
binary feature description called ABFT. Our approach detects the
reliable key-points by rejecting false ones such as noise or corner-
like structure. From these key-points, we build an anisotropic binary
feature descriptor by estimating the orientation and local structure
around key-points based on the structure tensor space. This paper is
organized as follows. Section 2 reviews conventional binary feature
transforms and defines the limitations of them. Section 3 introduces
the ABFT in detail. Experimental results are presented in Section 4
and we conclude this paper in Section 5.

2. MOTIVATION AND OVERVIEW
2.1. Scale-Space FAST Feature Detection
FAST corner detection [3] and its variants are popularly used due
to very low computational time while preserving the high detection
performance. However, the FAST has several limitations. For ex-
ample, the localization performance of the FAST decreases dramati-
cally as the amount of noise increases. Since it detects the key-points
based on the simple pixel-by-pixel intensity comparison, the degra-
dation of pixels by noise, especially impulse noise, may change the
difference of intensity, which increases a probability of false corner
detection. In addition, in the scale-space FAST employed to ORB,
BRISK or FREAK [6, 7, 8], corner-like structures such as the ramp
edges appear in a coarse scale, which may be false corners. In other
words, the scale-space FAST violates the scale-space causality crite-
ria which means no new key-points should be generated in the coarse
scale [9].

2.2. BRIEF Binary Feature Description
Binary feature descriptors such as BRIEF [4] or its variants are sen-
sitive to geometrical distortion such as rotation or affine transforma-
tion. As mentioned in many literatures, the performance of BRIEF
decreases dramatically for in-plane rotation variants. In order to
overcome this problem, there have been several approaches such as
steering the comparison pattern to orientation of features [6] or find-
ing the best comparison pattern based on the machine-learning [4].
However, there are no binary feature descriptors which are invariant
to affine transformation. Since affine transformation makes different
scale change according to the directions, the conventional isotropic
comparison pattern for binary descriptors cannot summarize the lo-
cal structure for neighborhood of the feature properly.

3. ANISOTROPIC BINARY FEATURE TRANSFORM
In this section, we propose an Anisotropic Binary Feature Transform
(ABFT), as it transforms the local salient image regions into robust
binary descriptors. ABFT is composed of feature detection and fea-
ture description steps. In detection step, ABFT detects the noise ro-
bust key-points on corner candidate region. From these key-points,
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Fig. 1. Results of key-points detection. (a) the noise ‘Graffiti’ image,
(b) BRISK [7], (c) Corner Candidate Region, (d) ABFT
ABFT builds the affine invariant binary descriptor by considering
the local structure around key-points in description step. Especially,
we use the structure tensor space for estimating the characteristic
scale and orientation of key-points and for constructing anisotropic
concentric patterns to build affine invariant binary descriptor.
3.1. Feature Detection
In the ABFT framework, we propose the scale-space corner candi-
date region FAST for noise robustness. First, we construct a Haar-
wavelet gradient map similar to SURF [2]. The Haar-wavelet gradi-
ent is computed by box filtering using integral image as follows:

Ix = (
∑

(s,t)∈PR

I(s, t)−
∑

(s,t)∈PL

I(s, t))/(
∑

(s,t)∈P
I(s, t))

Iy = (
∑

(s,t)∈PU

I(s, t)−
∑

(s,t)∈PD

I(s, t))/(
∑

(s,t)∈P
I(s, t))

(1)

where Ix and Iy are the derivatives of image I along the x and y di-
rection. PR, PL, PU and PD are the sub-patch toward to right, left,
up and down sides on 9×9 patch P for neighborhood of key-points.
Since the summation of sub-patch intensity and normalization terms
reduce noise effects, the Haar-wavelet gradient magnitude clearly
represents structure silhouette in the image. Then, we define the
corner candidate region as pixels whose Haar-wavelet gradient mag-
nitude is large enough to be corner by proper threshold based on the
fact that gradient magnitude of corner is the local maximum. Finally,
we detect key-points on the corner candidate region by FAST corner
detection. It is very advantageous that it detects the reliable struc-
ture corners by rejecting the false ones such as the noise or corner-
like structure. In addition, the detection computational time decrease
since the corner search area is restricted not on the homogeneous or
edge regions but on the corner candidate regions.

We construct an image scale-space Ii and gradient scale-space
∇Ii for scale selection. Each scale-space consists of the N octave
for i = {0, 1, ..., N−1} by bilinear interpolation down-sampling by
a factor of 1.5 similar to BRISK [7]. From the gradient scale-space,
the structure tensor space is computed as follows.

Si = Kρ ∗ ∇Ii(∇Ii)T = Kρ ∗

[
(Iix)

2
Iix ∗ Iiy

Iix ∗ Iiy (Iiy)
2

]
(2)

where Kρ is a Gaussian kernel for weighting neighborhood of the
key-points. Note that the structure tensor space is selectively com-
puted not on the overall image octaves but on the each key-point.
In addition, if the structure tensor is calculated once, it can be used
for estimating scale, orientation and anisotropic pattern of features
in overall process, which reduces the additional computational times
for these tasks dramatically.

We use the Harris corner measure [10] from the structure tensor
space in order to determine a characteristic scale to key-points. First,
we convert the coordinates of all coarse image key-points into the
corresponding coordinates in the original image. Then, we find a
local extrema with the Harris corner measure among the nearby key-
points existing on a 3× 3 neighborhood in the original image.

All key-points with the Harris corner measure less than the
threshold are discarded in order to eliminate the false corners on
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Fig. 2. Concentric circle patterns as the affine transformation varies.
(a) the ‘Graffiti’ image sequences, (b) isotropic concentric pattern,
(c) anisotropic concentric pattern
the homogeneous or edge regions. In addition, if a key-point in
the coarse image is too far from nearby key-points in the original
image, it is considered the false corner-like features. Thus, we also
discard the coarse scale key-points to satisfy the causality criteria in
scale-space or reject corner-like features. Fig. 1 shows the results
of key-points detection in the noise ‘Graffiti’ image. While the
conventional scale-space FAST detects the false key-points such as
noise or corner-like features, ABFT detects the explicit key-points
on structure regions.
3.2. Feature Description
The ABFT builds a binary descriptor using the results of randomly
sampled intensity comparison similar to BRIEF [4]. These random
sampling pairs are located on the concentric pattern around the key-
points. In contrast to an isotropic concentric pattern employed to
BRISK [7] or DAISY descriptor [11], an anisotropic concentric pat-
tern is used to build affine invariant and distinctive descriptor in
ABFT description.

Fig. 2 shows the comparison of the concentric pattern types in
‘Graffiti’ sequences varying affine transformation degree. As shown
in Fig. 2 (b), the isotropic concentric pattern is imprecise to de-
scribe the deformed neighborhood of the key-point. By contrast, the
anisotropic concentric pattern in Fig. 2 (c) distinctly summarizes
the local structure around key-points since the directions of affine
transformation is considered properly.

The isotropic concentric pattern Φ is defined as follows:

Φi,j = [ri cos θj , ri sin θj ]
T , 0 ≤ i < nr, 0 ≤ j < nθ (3)

where ri is the concentric circle radius for scale-normalized, θi is
the angles of each point on concentric pattern.

First, the ABFT determines the dominant orientation of key-
points using the structure tensor space. The eigenvector of structure
tensor determines the dominant orientation of the local structure [15,
16]. Thus, in order to allow the descriptor to be invariant to in-plain
rotation, the ABFT rotates the concentric pattern to the direction of
the eigenvector to smallest eigenvalue of each structure tensor.

The ABFT also transforms an isotropic concentric pattern to
an anisotropic concentric pattern. The structure tensor provides a
method for estimating the affine shape of a local structure. It is
proved that the neighborhood of features can be normalized by mul-
tiplying the square root matrix of structure tensor to the neighbor-
hood [12]. In this paper, we apply this property inversely to trans-
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Fig. 3. Repeatability evaluation for Mikolajczyk’s database [13]. (a)
‘Graffiti’ images, (b) ‘Trees’ images, (c) ‘Boat’ images , (d) ‘Bikes’
images, (e) ‘Wall’ images, (f) ‘Leuven’ images
form the isotropic concentric pattern into the anisotropic concentric
pattern for the affine invariant descriptor.

Therefore, the anisotropic concentric pattern Λ is defined by
multiplying the rotation matrix and the inverse of the square root
matrix of structure tensor to isotropic concentric pattern as follows:

Λi,j = S−1/2 ·Rθ · Φi,j , 0 ≤ i < nr, 0 ≤ j < nθ (4)

where S−1/2 is the inverse of the square root matrix of structure
tensor and Rθ is the rotation matrix of the orientation of key-points.

In order to build a binary descriptor, a random intensity compar-
ison test can be defined as follows [7]:

τ(Λ; pi, qi) =

{
1 I(Λ, pi) < I(Λ, qi)
0 otherwise

(5)

where I(Λ, pi) and I(Λ, qi) are the intensity of randomly sampled
pair pi and qi on the anisotropic circle concentric pattern Λ. There-
fore, the ABFT builds the anisotropic binary feature descriptor that
corresponds to the decimal counterpart as follows:

N∑
i=1

2i−1τ(Λ; pi, qi) (6)

In this paper, we determine the length of descriptors N to 512
which shows the suitable performance, but 128 or 256 are enough to
proper matching performance. Matching costs of ABFT descriptor
are very low because the Hamming distance, performed by a bitwise
XOR, can be used for a measure of their similarity.

4. EXPERIMENTAL RESULTS
In this section, we extensively evaluate the ABFT with a variety of
other methods such as SIFT [1], SURF [2], ORB [6] and BRISK

(a) (b)

Fig. 4. Repeatability evaluation for the noise ‘Graffiti’ image. (a)
impulse noise, (b) Gaussian noise

[7] in terms of the repeatability, recognition rate and computational
complexity. We evaluate these criteria for Mikolajczyk’s database,
which is popular evaluation frameworks in the field [13, 14]. The
database consists of six image sequences and each sequence has the
different image deformation condition: viewpoint and affine change
(Graffti and Wall), scale and rotation change (Boat), blur change
(Bikes and Trees) and illumination change (Leuven). The database
also provides a ground truth homography that can be used for es-
timating the correspondence of key-points. The implementation of
BRISK are obtained from the authors and the others such as SIFT,
SURF and ORB come from OpenCV 2.3 implementation.

4.1. Repeatability
The performance of the feature detector in terms of localization ac-
curacy is measured by the repeatability as defined in [13]. The re-
peatability is the ratio of the correspondences to the minimum num-
ber of detected key-points in each image. The correspondences are
identified by measuring the distance between a key-point in the one
image and the projected key-point from the second image by the
proper homography [13].

As shown in Fig. 3, among the conventional methods, BRISK
represents the highest repeatability in the overall image sequence
except for some images. However, ABFT represents better repeata-
bility than BRISK and other detectors. In ‘Graffiti’, ‘Wall’ and ‘Leu-
ven’ sequences, ABFT represents the best detection performance
compared with the others. In addition, while the performance of cor-
ner detector such as ORB, BRISK or FAST decrease in the ‘Trees’,
‘Boat’ and ‘Bikes’ images containing perspective deformation such
as blur or scale change, ABFT outperforms other corner detectors
although it also detects corner features. However, the performance
of ABFT also decrease in high blur deformation degrees as shown
in Fig. 3 (b), (d), which are limitation of corner detector compared
with the blob detector such as SIFT, SURF.

In order to evaluate robustness to noise for ABFT, we measure
the repeatability for the ‘Graffiti’ images corrupted by additive noise,
the Gaussian and impulse noise. The corrupted Gaussian noise vari-
ance varies from 0.01 to 0.02 with zero mean and impulse noise
density varies from 0 to 0.005 which are enough to verify the noise
robustness. As mentioned before, FAST and its variant are very vul-
nerable to the noise, especially impulse noise. Fig. 4 shows that
ABFT is more robust to both impulse and Gaussian noise than the
conventional FAST or SIFT known as the noise robust algorithm.

4.2. Recognition Rate
The recognition rate is computed as the ratio of the correct matching
number of descriptors to the number of descriptors defined in [4].

The performance of feature descriptor depends on the types of
image deformation [14]. Fig. 5 shows that the binary descriptors
such as ORB or BRISK outperforms the real-valued descriptors
SIFT or SURF in the perspective deformation such as illumination,
blur. On the other hands, in the geometrical distortion such as
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Fig. 5. Recognition rate evaluation for Mikolajczyk’s database [13].
(a) ‘Graffiti’ images, (b) ‘Trees’ images, (c) ‘Boat’ images , (d)
‘Bikes’ images, (e) ‘Wall’ images, (f) ‘Leuven’ images

viewpoint or affine, SIFT or SURF outperforms ORB or BRISK.
However, ABFT shows competitive performance with other descrip-
tors representing the highest recognition rate in any image sequences
and even outperforms. The recognition rate of most descriptors for
the ‘Graffiti’ images which contains affine distortion decrease dra-
matically as the degree of distortion increases. However, ABFT
shows consistently high recognition rate for the overall sequence,
which clearly shows the robustness of ABFT to affine or geomet-
rical distortion. In addition, under viewpoint changes, the SIFT or
SURF generally represent higher performance than the conventional
binary descriptors. However, the highest recognition rate of ABFT
in ‘Wall’ image represents that it compensates the drawback of the
other binary descriptors such as BRISK or ORB. In other image
sequences, ABFT also outperforms other descriptors.

4.3. Computational Complexity
We compare the computational time of ABFT with that of SIFT,
SURF, ORB and BRISK. The experiments run on Intel(R) Core(TM)
2 Quad CPU Q6600 at 2.40 GHz. The computational time is mea-
sured for the ‘Graffiti’ sequences which have 680×800 sizes by cal-
culating the average of 20 runs. As shown in Table 1, the detection
and description time of binary feature transforms such as BRISK,
ORB and ABFT are an order of magnitude faster than SURF conven-
tionally known as the most computationally efficient method. Espe-
cially, ABFT shows the best timing performance among the state-of-
the-art binary descriptors. Although the computational performance
of ABFT is similar to BRISK, ABFT shows better repeatability and
recognition rate than BRISK.

5. CONCLUSION
In this paper, we proposed the noise robust feature detector and
affine invariant feature descriptor called ABFT. It detects the reli-
able key-points based on corner candidate region FAST which is ro-
bust to noises or false corner-like structures. From these key-points,
it builds the affine invariant binary feature descriptor by transform

Table 1. Computational time evalution results
Algorithms ABFT BRISK ORB SURF SIFT
Detection(ms) 172 156 328 531 3984
Description(ms) 158 157 610 938 4875
Total(ms) 330 313 938 1469 8859

Key-points 1545 1435 1998 1444 1516
Time/Point(ms) 0.214 0.218 0.469 1.017 5.844

the isotropic concentric pattern to the anisotropic concentric pattern
based on the structure tensor space. Experimental results show that
ABFT is robust to noise and geometrical distortion compared with
other state-of-the-art methods in terms of the repeatability and recog-
nition rate. ABFT also shows the best computational efficiency. In
future, we will extend the ABFT so that it would be applied to spa-
tiotemporal matching.
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