

Recurrent Transformer Networks for Semantic Correspondence

Seungryong Kim¹, Stepthen Lin², Sangryul Jeon¹, Dongbo Min³, Kwanghoon Sohn¹

Dec. 05, 2018

Introduction

Semantic correspondence

- Establishing <u>dense correspondences</u> between <u>semantically similar images</u>, i.e., different instances within the same object or scene categories
- For example, the wheels of two different cars, the body of people or animals

Introduction

Challenges in semantic correspondence



Photometric Deformations

- Intra-class appearance and attribute variations
- Etc.

Geometric Deformations

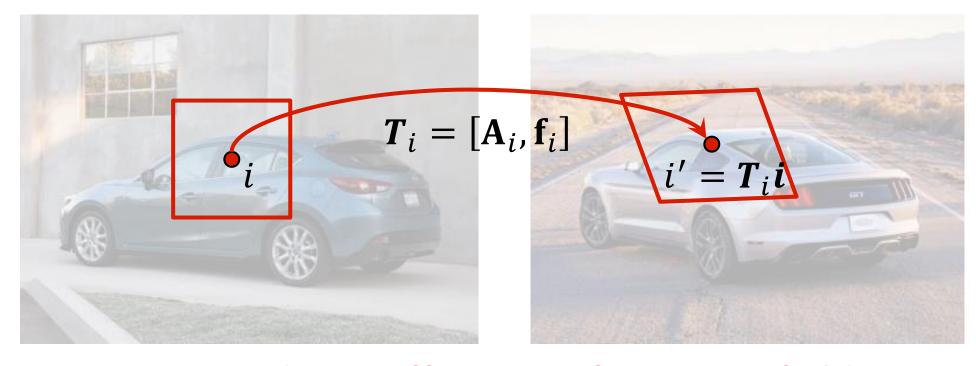
- Different viewpoint or baseline
- Non-rigid shape deformations
- Etc.

Lack of Supervision

- Labor-intensive of annotation
- Degraded by subjectivity
- Etc.

Problem Formulation

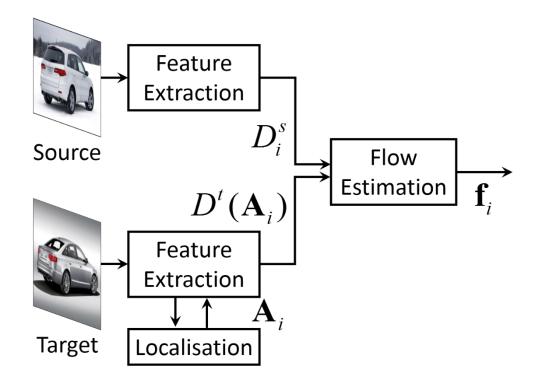
Objective: locally-varying affine transformation fields



→ How to estimate dense affine transformation fields between semantically similar images?

Related Works

Methods for geometric invariance in the feature extraction

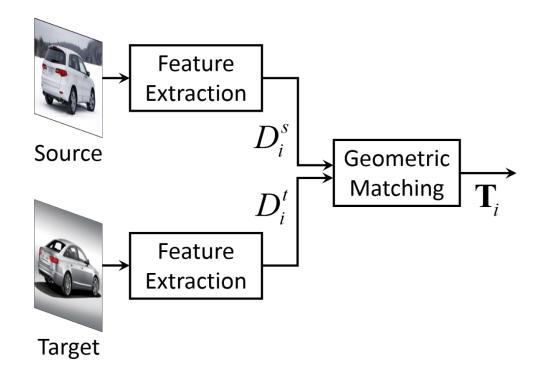


- **UCN** [Choy et al., NIPS'16]
- **CAT-FCSS** [Kim *et al.*, TPAMI'18]
- Etc.

- ✓ Spatial Transformer Networks (STNs)-based methods [Jaderberg et al., NIPS'15]
- \checkmark \mathbf{A}_i is learned wo/ \mathbf{A}_i^*
- \times But, \mathbf{f}_i is learned w/ \mathbf{f}_i^*
- Geometric inference based on only source or target image

Related Works

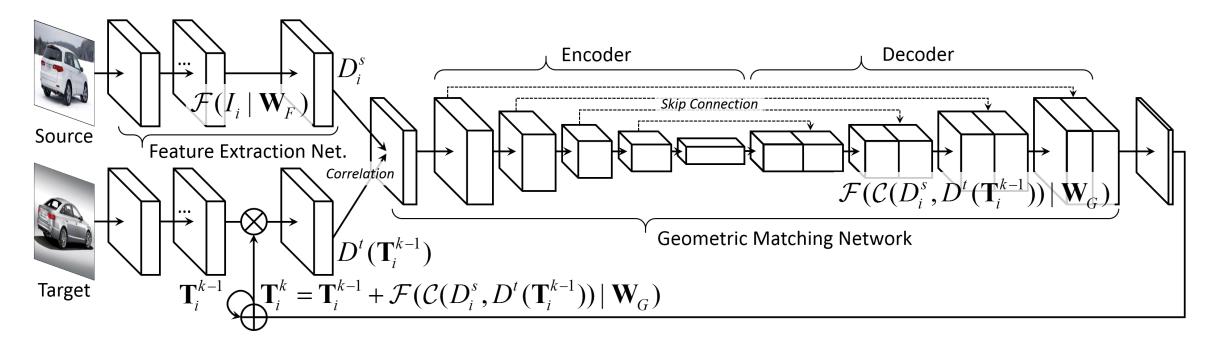
Methods for geometric invariance in the regularization



- **GMat.** [Rocco *et al.*, CVPR'17]
- **GMat. w/Inl.** [Rocco *et al.*, CVPR'18]
- Etc.

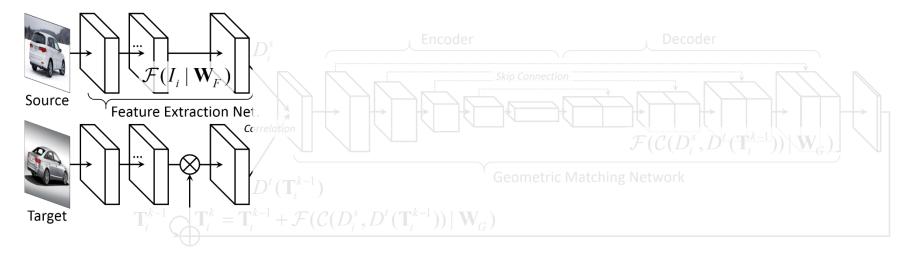
- ✓ \mathbf{T}_i is learned wo/ \mathbf{T}_i^* using self- or meta-supervision
- ✓ Geometric Inference using source/target images
- Globally-varying geometric Inference only
- only fixed, untransformed versions of the features

Networks configuration



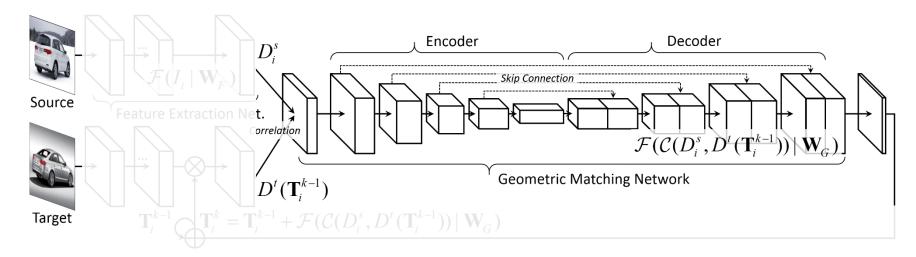
Weaves the advantages of STN-based methods and geometric
matching methods by recursively estimating geometric transformation
residuals using geometry-aligned feature activations

Feature Extraction Networks



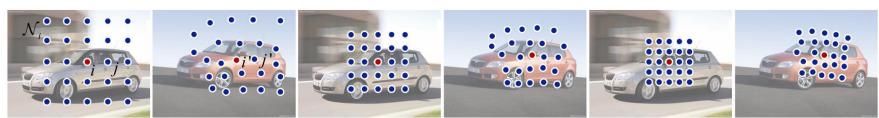
• To extract features D^s and D^t , input images I^s and I^t are passed through convolution networks with parameters \mathbf{W}_F such that $D_i = F(I|\mathbf{W}_F)$ using CAT-FCSS, VGGNet (conv4-4), ResNet (conv4-23)

Recurrent Geometric Matching Networks



Constraint correlation volume construction

$$C(D_i^s, D^t(\mathbf{T}_j)) = < D_i^s, D^t(\mathbf{T}_j) > / \sqrt{< D_i^s, D^t(\mathbf{T}_j) >^2}$$

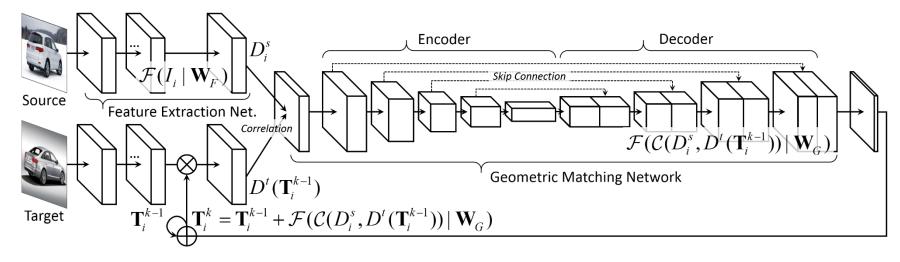


Search window 4

Search window 2

Search window 1

Recurrent Geometric Matching Networks



Recurrent geometric inference

$$\mathbf{T}_i^k - \mathbf{T}_i^{k-1} = F(C(D_i^s, D^t(\mathbf{T}_i^{k-1})) | \mathbf{W}_G)$$

Weakly-supervised Learning

- Intuition: matching score between the source D^s at each pixel i and the target $D^t(T_i)$ should be maximized while keeping the scores of other candidates low!
- Loss Function:

$$L(D_i^s, D^t(T)) = -\sum_{j \in M_i} p_j^* \log(p(D_i^s, D^t(T_j)))$$

where the function $p(D_i^s, D^t(T_i))$ is a Softmax probability

$$p(D_i^s, D^t(T_j)) = \frac{\exp(C(D_i^s, D^t(T_j)))}{\sum_{l \in M_i} \exp(C(D_i^s, D^t(T_j)))}$$

where p_i^* denotes a class label defined as 1 if j=i, 0 otherwise

Experimental Results

Results on the TSS Benchmark

Source images

Target images

SCNet [Han *et al.,* ICCV'17]

GMat. w/Inl. [Rocco et al., CVPR'18]

RTNs

Experimental Results

Results on the PF-PASCAL Benchmark

Source images

Target images

SCNet

GMat. w/Inl. [Han et al., ICCV'17] [Rocco et al., CVPR'18]

RTNs

Experimental Results

Results on the PF-PASCAL Benchmark

Source images

Target images

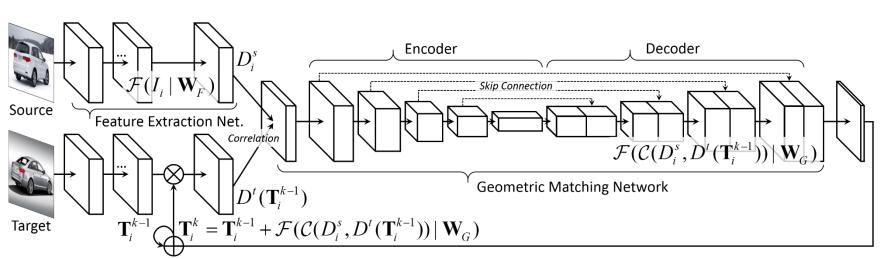
SCNet

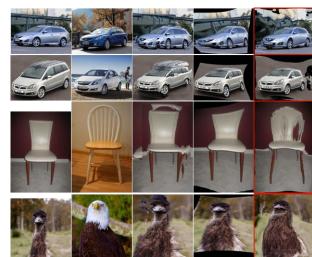
GMat. w/Inl. [Han et al., ICCV'17] [Rocco et al., CVPR'18]

RTNs

Concluding Remarks

- RTNs learn to infer locally-varying geometric fields for semantic correspondence in an end-to-end and weakly-supervised fashion
- The key idea is to utilize and iteratively refine the transformations and convolutional activations via matching between the image pair
- A technique is presented for weakly-supervised training of RTNs





Thank you! See you at 210 & 230 AB #119

Seungryong Kim, Ph.D.

Digital Image Media Lab.

Yonsei University, Seoul, Korea

Tel: +82-2-2123-2879

E-mail: srkim89@yonsei.ac.kr

Homepage: http://diml.yonsei.ac.kr/~srkim/

