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Abstract—We present a unified framework for image classifi-
cation of image sets taken under varying modality conditions.
Our approach is motivated by a key observation that the
image feature distribution is simultaneously influenced by the
semantic-class and the modality category label, which limits the
performance of conventional methods for this task. With this
insight, we introduce modality uniqueness as a discriminative
weight that divides each modality cluster from all other clusters.
By leveraging the modality uniqueness, our framework is formu-
lated as unsupervised modality clustering and classifier learning
based on modality-invariant similarity kernel. Specifically, in the
assignment step, training images are first assigned to the most
similar cluster in terms of modality. In the update step, based on
the current cluster hypothesis, the modality uniqueness and the
sparse dictionary are updated. These two steps are formulated
in an iterative manner. Based on the final clusters, a modality-
invariant marginalized kernel is then computed, where the
similarities between the reconstructed features of each modality
are aggregated across all clusters. Our framework enables the
reliable inference of semantic-class category for an image, even
across large photometric variations. Experimental results show
that our method outperforms conventional methods on various
benchmarks, e.g., landmark identification under severely varying
weather conditions, domain-adapting image classification, and
RGB-NIR image classification.

Index Terms—Image classification, unsupervised modality clus-
tering, modality uniqueness, dictionary learning.

I. INTRODUCTION

IMAGE classification for analyzing or classifying an image
into semantically meaningful categories has been one of

the most popular research topics in many computer vision and
computational photography society [1], [2].

Conventionally, the bag-of-words (BoW) [4] approach and
its variants based on local features, such as the scale invariant
feature transform (SIFT) [5], have been mainstream methods
for image classification [6]–[9]. Recently, with the availablity
of large-scale training databases, e.g., LabelME [10] and Ima-
geNet [11], deep convolutional neural networks (CNNs) [1]
methods have provided substantially improved performance
for that task [2], [12]–[14]. More recently, many approaches
have tried to use CNN activations as off-the-shelf features,
followed by a classifier learning [2], [3], [15].
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(i) Conventional similarity kernel
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(j) Proposed similarity kernel

Fig. 1. Examples of similarity kernel for images under challengingly varying
modality conditions. (a)-(d) Tower bridge images taken under snow condition
in (a), (b) and sunset condition in (c), (d) with their corresponding deep CNN
activation features (4096-d) [3]. (e)-(h) Stonehenge images taken under snow
condition in (e), (f) and sunset condition in (g), (h). In conventional similarity
kernel (e.g., inner product) as in (i), the similarity between images derived
from same modality is higher than that between images derived from a similar
category, which limits the performance of conventional methods. Unlike this
conventional kernel, the proposed kernel is robust to photometric variations.

To semantically classify an image, conventional methods
have been based on a common assumption that images from
the same semantic category in the training set have similar
feature distributions, while images from different categories
have different feature distributions [2], [4]. Based on this
assumption, they tried to train classifiers (or decision bound-
aries) on the feature space that divide the training images
into semantic categories. However, in real circumstances, an
image might be taken under various modality1 conditions, such

1In this paper, a modality is considered as terminology to denote a common
image characteristic, which is similar to domain [16] or style [17].
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as different scene radiance across lighting conditions, times,
weathers, and seasons, or different camera specifications and
settings [17], [18]. In these cases, the color statistics of images
could be different across modality conditions, and further the
feature distributions even from same semantic category cannot
be coincident; rather, the feature distribution of images can be
influenced by the modality condition corresponding to where
the images were taken. Therefore, conventional approaches for
image classification might provide unsatisfactory performance
for a training image set built under severely varying conditions,
since their feature-consistency assumption across semantic-
class categories is no longer valid. Moreover, when training
and testing image sets are established under different modality
conditions, the accuracy of the image classification could also
be degraded severely.

In these circumstances, robust local descriptor-based meth-
ods [5], [19] or robust global descriptor-based methods [1],
[4] cannot be a fundamental solution for that task, since the
modality variation explicitly influences the local and global
feature distributions. With a similar problem setting as these
cases, domain adaptation methods have been tried to solve
domain-variation problems between training and testing image
sets, or source and target domain image sets [16], [20]. In
fact, domain adaptation methods consider explicitly divided
image sets as source and target domain. However, in practice,
a training image set can be thought as a collection of subsets
with multiple unknown domains; thus, approaches for domain
adaptation cannot be applied to general domain variation
problems. Furthermore, these problems can be related to cross-
domain matching [21], [22], which aims to find visually
similar images across various domains. However, they only
consider spatially and structually similar images.

To solve these ill-posed problems, our approach starts from
a key observation that the image feature distribution is simul-
taneously influenced by semantic class and modality category,
as shown in Fig. 1, which induces the inherent limitation of
conventional image classification methods. Inspired by this
insight, from the similar perspective of a decision boundary
that divides training images in terms of semantic class labels,
we discover that a decision boundary also exists, which
divides images of one modality category from images of other
modality categories.

Based on this observation, we propose a modality-invariant
image classification framework that has two key ingredi-
ents, namely unsupervised modality clustering and modality-
invariant similarity kernel based classifier learning. We ini-
tially divide the training images into modality clusters using a
spectral clustering scheme. For unsupervised clustering, in the
assignment step, each training image is assigned to the most
similar cluster. In the update step, the modality uniqueness
and dictionary are computed based on the current cluster
hypothesis. These steps are iteratively formulated. Based on
the final clusters and modality uniqueness/dictionary for each
cluster, a marginalized similarity kernel is finally computed by
aggregating the similarities between the reconstructed features
of each cluster. Our framework enables us to robustly infer
semantic category labels for images taken under severe modal-
ity variations. We compare our framework with conventional

methods on novel landmark identification [23] under varying
weather conditions, domain adaptation [24], and RGB and
near-infrared (NIR) image classification [25].

The remainder of this paper is organized as follows. Section
2 introduces related work for the proposed method. Section 3
describes the proposed modality-invariant image classification
framework. Experimental results and discussions are given in
Section 4. Finally, the conclusion and suggestions for future
work are given in Section 5.

A. Contributions

The contributions of our approach can be summarized as
follows. First, to the best of our knowledge, our approach
is the first attempt to solve the image classification problem
under severe modality variations, which conventional methods
cannot address. Second, we introduce modality uniqueness
to encode a distinctive property of each modality, which is
defined as a decision boundary to divide each modality-specific
cluster from all other clusters. By leveraging this, we propose
unsupervised modality clustering. Third, we define a novel
similarity kernel to provide modality invariance for training
a classifier. Fourth, we built a novel landmark-identification
benchmark taken in severely varying weather conditions. Fi-
nally, we provide an intensive comparative study with state-
of-the-art methods using various datasets.

II. RELATED WORK

This section describes related works, including global fea-
ture descriptor, domain adaptation and generalization, cross-
domain matching, and sparse dictionary learning.

A. Global Feature Descriptor

Conventionally, GIST [26] has been one of the primary
global features for image classification; however, its perfor-
mance is limited on small-scale databases. Subsequently, as
a pioneering work, bag-of-words (BoW) [4] based methods
have been the mainstream for that task. To alleviate the
lack of spatial information in BoW, spatial pyramid matching
(SPM) [27] was proposed, which leverages a multi-level grid
technique. Furthermore, to solve the problem of a hard voting
process in BoW, sparse coding (SC) [6], locality linear coding
(LLC) [7], vectors of locally aggregated descriptor (VLAD)
[8], Fisher vectors (FV) [9], and fast local-area-independent
representations (FLAIR) [28] have been proposed. However,
these methods have inherently limited performance, since
they are derived from local descriptors, such as SIFT [5],
which have limited discriminative power. Recently, image-
classification performance has been impressively improved by
leveraging the availability of large-scale training datasets [10],
[11] and deep convolutional neural networks (CNNs) [1], [2],
[12]–[14]. More recently, many approaches have been tried
to use CNN activations as off-the-shelf features, followed
by a classifier learning [2], [3], [15]. However, even CNN-
based approaches cannot address severe modality variations
in the training and testing image sets, as will be shown in our
experiments.
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B. Domain Adaptation

To deal with the domain variations between training and
testing image sets, the domain adaptation has been widely
studied in many research areas, e.g., language processing [29],
[30], machine learning [31], [32], and computer vision [33].
As a primary work, based on information-theoretic metric
learning (ITML) [34], Saenko et al. [24] proposed a method
that adapted object models acquired in a particular domain to
a new domain by learning a transformation. The asymmetric
regularized cross-domain transformation (ARC-t) [20] was
also proposed. These methods have tried to solve problem
settings where the source and target domains are explicitly
determined, and the semantic-class labels are also known.

As a more challenging problem setting, unsupervised do-
main adaptation deals with the problem where only the
source domain is labeled, whereas the target domain is not.
Grassmann manifold-based methods were proposed to solve
these problems, e.g., the sampling geodesic flow (SGF) [16]
and geodesic flow kernel (GFK) [35]. Fernando et al. [36]
performed unsupervised domain adaptation based on subspace
alignment. Zhu et al. [37] proposed a semi-supervised ap-
proach based on dictionary learning. Unlike these methods, our
approach tries to solve the problem where no domain infor-
mation is known for the training or testing images. Recently,
an adaptive descriptor design (ADD) [17] was proposed to
solve a similar problem by leveraging the kernel descriptor and
multiple kernel learning (MKL) [38]; however, it also provided
unsatisfactory results since it was defined with gradient-based
kernel descriptors, whose limitation were studied in [39].

C. Domain Generalization

One of the works most related to our approach is domain
generalization. In [40], Hoffman et al. proposed a constrained
clustering method to discover the latent domains. In [41],
Gong et al. partitioned the training samples from one domain
into multiple domains by simultaneously maximizing the dis-
tinctiveness and learnability. Unlike these methods, our ap-
proach divides training images into modality-specific clusters
and trains modality-invariant classifiers simultaneously.

On the other hand, several approaches have been proposed
to classify an image according to its style. Using images from
aesthetic visual analysis (AVA) datasets [42], several previous
approaches have developed a system to classify images into
classic painting styles [43], [44]. However, they considered
only a handful of styles that are visually very distinct. Mensink
[45] provided a larger artwork dataset, but did not consider
the style classification. Furthermore, several approaches have
been considered for weather classification [46]–[48], but they
have focused on specific weather cues, which provide limited
performance for general modality conditions.

D. Cross-Domain Matching

Many studies have been devoted to matching images across
specific domains, including photos across different lighting
conditions [49], sketches to photographs [50], [51], paintings
to photographs [52], and computer graphic (CG) images to
photographs [53]. However, these domain-specific solutions
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Fig. 2. Framework of the modality-invariant image classification. It consists of
clustering initialization, unsupervised clustering, and modality-invariant kernel
computation. Based on modality uniqueness and dictionary from each cluster,
it divides the training image set into modality-specific clusters, and estimates
modality-invariant similarity kernel to finally learn a classifier.

are not applicable to cases with multiple potential domains. For
a more generalized solution, some methods focused on design-
ing robust local descriptors, e.g., self-similarity [19], across
different visual domains. Furthermore, for that task, data-
driven approachs [21], [22] spatially boost local descriptors by
leveraging a linear classifier. Nevertheless, these approaches
cannot be applied to general modality variation problems.

E. Sparse Dictionary Learning
Dictionary learning based on sparse coding has been proven

to be very effective in image reconstruction [54]–[56], im-
age de-noising [57], [58], image de-blurring [59], image in-
painting [60]–[62], super resolution [59], [62], and image
retrieval [63]. Among the many existing dictionary learning
methods, the k-means singular-value decomposition (K-SVD)
method [64] is one of the most widely used methods. For
image classification in [63], sparse coding was applied to
derive a compact yet discriminative image representation from
multiple feature types for large-scale image retrieval. In [65],
a clustering method using the sparse modeling and dictionary
learning setting was introduced, where a set of dictionaraies
was optimized to reconstruct signals in a sparse coding man-
ner. In our approach, a sparse dictionary is used to encode
a distinctive characteristic for each modality, and we further
propose a novel fidelity term in dictionary learning to encode
modality-specific information.

III. MODALITY-INVARIANT IMAGE CLASSIFICATION

A. Problem Formulation and Overview
Let us consider global feature descriptors in a matrix form

X = [x1, ...,xNt
] ∈ Rd×Nt computed as xk = Ψ(Ik) ∈ Rd
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for an image Ik from training image set St = {(Ik, yk)}.
Here, Ψ(·) is the global feature description operator. k ∈ Φt =
{1, ...,Nt} and yk ∈ Φc = {1, ...,Nc}, where the number of
training images and class categories are denoted as Nt and
Nc, respectively. Our approach aims to infer class category
label yi for given query image Ii in the testing image set by
leveraging classifier H(St) from training image set St.

Unlike conventional image classification approaches, which
provide limited performance for training and testing image sets
under severe modality variations, our approach starts from the
observation that training image set St is derived under multiple
hidden modalities ml for l ∈ Φm = {1, ...,Nm}, where
Nm is the number of modality categories. By considering
modality categories ml, our image classification model can
be formulated in a probabilistic aspect as follows:

yi = arg min
c∈Φc

P(c|xi)

= arg min
c∈Φc

∑
l∈Φm

P(ml|xi)P(c|xi,ml),
(1)

where P(c|xi) is the probability of class category c under xi,
P(ml|xi) is the probability of modality category ml under xi,
and P(c|xi,ml) is the probability of class category c under
ml and xi. In discriminative learning, e.g., support vector
matchines (SVM), it is important to design a kernel function,
where a high similarity is encoded for features from inner-
class categories and a low similarity is encoded for features
from inter-class categories [66], [67].

In a similar manner, based on the Bayesian theorem [66],
we can reformulate such that P(c|x,m) = P(x,m|c)P(c)
in (1) for each modality m with the probability P(m|x). To
estimate a reliable yi in (1), when P(c) is considered to be
same for all c, features xi and xj from the same class category
c and modality category m should have similar probabilities,
P(xi,m|c) and P(xj ,m|c). That is, under the same m and
c, xi and xj should have a high similarity. Based on this,
our approach leverages a kernel-embedding scheme where the
kernel function K(xi,xj) for xi and xj is formulated as

K(xi,xj) =
∑
l∈Φm

∑
l′∈Φm

P(ml|xi)P(ml′ |xj)Kml,ml′ (xi,xj),

(2)
where P(ml′ |xj) is the probability of modality category ml′

for xj . Kml,ml′ (xi,xj) is a joint-modality kernel function,
which encodes the similarity between xi and xj under modal-
ity categories ml and ml′ , respectively. Using this aggregated
kernel K(xi,xj), the effects of the modality variations in the
training and testing image set can be reduced, and the further
discriminative powers of a classifier can be enhanced. How-
ever, it is not easy to define K(xi,xj) because the modality
clusters from the training image set, and even the number of
modalities are unknown. Furthermore, the modality probability
P(ml|xi) and the joint kernel function Kml,ml′ (xi,xj) are
also hard to define.

To accomplish this task, we first introduce the modality
uniqueness concept as a discriminative weight that divides
each modality cluster from all other modality clusters, which
will be discussed in Sec. III-B. We then estimate a sparse dic-
tionary for each modality, where its fidelity term is weighted
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Fig. 3. Examples of the modality uniqueness wl with deep CNNs activation
features [1] for different modality (e.g., weather) clusters. Different modality
uniqueness encodes different modality characteristic.

with the modality uniqueness. This modality uniqueness and
dictionary are iteratively computed until the training images
are divided optimally, which will be described in Sec. III-C.
We finally define the similarity kernel to train a modality-
invariant image classifier, which will be described in Sec.
III-D. The number of modalities and initial cluster hypothesis
are estimated in an initialization, which will be described in
Sec. III-E. Our framework is summarized in Fig. 2.

B. Modality Uniqueness

Encoding a distinctive visual property for each modality is
not an easy task since it requires a detailed model. In this
section, we instead encode this property of each modality
in a data-driven manner. Our main observation is that each
modality has a distinctive weight in a feature domain that
distinguishes between the features of one modality cluster and
all other modality clusters. We define this weight vector as
the modality uniqueness. It is derived from similar intuitions
with an exemplar-SVM [68] and data-driven uniqueness [69],
[70]. Compared to these methods, the modality uniqueness is
defined to encode modality-specific characteristics in a feature
domain.

Specifically, it is defined as a discriminative weight vector
to divide the features of cluster Cl for modality ml from the
features of sub-set St/Cl that exclude images of Cl from St.
The modality uniqueness wl ∈ Rd for modality ml is defined
by exploiting discriminative learning, i.e., SVM, with a linear
decision boundary ρ(wl,xi) defined such that

ρ(wl,xi) = wT
l xi, (3)

where weight wl indicates the contribution of a feature de-
scriptor xi for each component. Learning the modality unique-
ness wl amounts to minimizing objective function E(wl),
composed of a fidelity function L(wl) and a regularization
function R(wl), such that

E(wl) = ηL(wl) +R(wl)

= η
∑

i∈Φt

h(bli · ρ(wl,xi)) +R(wl),
(4)
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Fig. 4. Toy examples of unsupervised modality clustering. For global feature
descriptor xi with initial 2 modality cluster class in (a), first of all, we compute
modality uniqueness wl in (b). With the modality uniqueness, the feature can
be transformed in a modality-distinctive space wl � xi. With the modality
uniqueness and dictionary, the modality cluster is divided more distinctively
in (d) compared to (a). After evolving iterations, as shown in (e), (f), the
modality cluster can be more distinctively divided.

where η represents a regularization parameter, and the hinge
loss function h(·) = max(1 − ·). bli represents 1 for images
Ii from Cl, and 0 otherwise.

In a matrix/vector form, (4) can be redefined as

E(Wl) = ηtr{h(Bl(X
1/2)TWlX

1/2)}+R(Wl), (5)

where Wl is the modality uniqueness in a matrix form, defined
as Wl = diag[wl]d×d. Bl = diag[bli]Nt×Nt .

In an SVM [67], the regularization function is generally
defined as l2 norm, i.e., R(Wl) = ‖Wl‖2F . In contrast, to
estimate a modality-specific weight Wl, our regularization
function is derived from a fidelity term in sparse dictionary
learning, which will be described in Sec. III-C. It is worth
noting that compared to conventional domain- or style-specific
cues [46]–[48], the modality uniqueness can be generally
applied to any feature descriptors.

Fig. 3 represents the examples of the modality uniqueness
wl. Each component of wl represents the importance of
the corresponding feature components towards encoding a
distinctive property for each modality. As shown in Fig. 5,
in a feature space of xi weighted by modality uniqueness wl,
i.e., wl � xi, where � indicates a component-wise product,
the division of clusters can be more distinctive compared in
the feature space of xi itself. To leverage this property, the
modality uniqueness will be incorporated in an energy function
of the unsupervised modality-clustering scheme in Sec. III-C
and, further, be used to define a modality-invariant kernel for
classification in Sec. III-D.

C. Unsupervised Modality Clustering

Our approach assumes that the training image set consists
of multiple hidden modalities, but we cannot have any prior
information on the modality categories. In this section, we
propose an unsupervised modality-clustering scheme, where

the training image set St is divided into the modality cluster Cl.
We employ an iterative scheme for this clustering. Specifically,
based on each modality cluster Cl, we estimate the modality
uniqueness wl, defined in Sec. III-B, and the sparse dictionary
Dl. Furthermore, to reduce the discrepancy of dictionary Dl,
we also propose an incoherent dictionary D̃ similar to [65].
All these parameters are iteratively updated.

For modality cluster Cl, our energy function E(w,D, D̃, α)
is formulated to estimate modality uniqueness w, dictionary
D, and incoherent dictionary D̃ simultaneously such that

E(w,D, D̃, α) =
∑
l∈Φm

∑
i∈Cl

(
‖wl � (xi −Dlαi)‖22 + λ|αi|1

)
+ τ‖D̃−Dl‖2F + ηL(wl)

s.t. ∀l, u, ‖dl,u‖2 < 1,
(6)

where λ, τ , and η are parameters. ‖ · ‖2, | · |1, and ‖ · ‖F
denote l2 norm, l1 norm, and frobenius norm, respectively.
Dl = [dl,1, ...,dl,v] ∈ Rd×v , where v is a dimension of sparse
coefficient. αi ∈ Rv is the sparse coefficient. L(wl) is the loss
function for modality uniqueness wl defined in (4).

For the sake of simplification, the energy function in (6) can
be derived as a matrix/vector form denoted as E(W,D, D̃,Λ)
with same constraints such that∑

l∈Φm

‖Wl(Xl −DlΛl)‖2F + λ|Λl|1

+ τ‖D̃−Dl‖2F + ηtr{h(Bl(X
1/2)TWlX

1/2)},
(7)

where Xl = [x1, ...,xNCl
] ∈ Rd×NCl is a sub-global feature

descriptor for Ii for cluster Cl, where NCl is the number of
samples in Cl. Λl = [α1, ..., αNCl

] ∈ Rv×NCl is the sparse
coefficient matrix, and |Λl|1 =

∑
i∈Cl
|αi|1.

Our energy function E(W,D, D̃,Λ) is formulated to have
the following three desirable properties. First, the fidelity term
for dictionary learning (i.e., ‖Wl ·(Xl−DlΛl)‖2F ) is weighted
by modality uniqueness Wl, which enables estimating the
modality-specific dictionary Dl by considering important com-
ponents from Wl. Second, the fidelity term is further consid-
ered as a regularization function R(Wl) for training modality
uniqueness Wl, which enables the estimation of the modality-
specific weight Wl by considering the reconstruction error of
each component between Xl and DlΛl. Third, by introducing
D̃, rather than independently estimating Dl and Λl for each
Cl, all Dl and Λl are learned simultaneously. This enables
building a robust sparse dictionary that encodes not only the
distinctive characteristics of each cluster, but also common
ones across all clusters.

E(W,D, D̃,Λ) cannot be solved directly due to its non-
convex property. Instead, we minimize this energy function
such that modality uniqueness Wl, dictionary Dl, and in-
coherent dictionary D̃ are iteratively solved for each cluster
Cl. Following this, the cluster hypothesis Cl is estimated. For
unsupervised modality clustering, our framework employs an
iterative optimization using a Lloyd′s-type algorithm including
assignment and update steps.
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1) Assignment Step: In each step, we iteratively divide
the training images into modality clusters. When modality
uniqueness Wl and dictionary Dl are estimated and fixed in
the previous iteration, all images in the training image set
are divided into the cluster Cl such that the best cluster is
determined by minimizing the reconstruction error

P(xi; wl,Dl) = ‖wl � (xi −Dlαi)‖22 + λ|αi|1, (8)

where αi is a sparse coefficient for xi decomposed using wl

and Dl. In experiments, we used SPArse Modeling Software
(SPAMS) toolbox [71].

With reconstruction error P(xi; wl,Dl), each modality-
cluster hypothesis Cl is determined, such that

Cl = {i|P(xi; wl,Dl) ≤ P(xi; wl′ ,Dl′),∀i, l′ ∈ Φm}. (9)

Modality cluster hypothesis Cl is then used to train modality
uniqueness wl and modality dictionary Dl in the update step,
as described in Sec. III-C2.

2) Update Step: In the update step, the modality uniqueness
and dictionary are computed fixing the cluster assignments Cl

found in the assignment step as in Sec. III-C1. In the following,
we will summarize how to estimate Wl, Dl, and Λl from
E(W,D, D̃,Λ) in each iteration step.
Computing Wl: As described in Sec. III-B, the modality
uniqueness Wl for cluster Cl is computed as a discriminative
weight as a decision boundary for dividing features of Cl

from those of St/Cl. The energy function in (7) in terms
of modality uniqueness W with fixing D, D̃, and Λ can be
derived as

E(W) =
∑

l∈Φm

E(Wl). (10)

This energy function E(W) can be solved independently for
each E(Wl). Unlike the conventional l2 norm regularization
‖Wl‖2F in SVM [67], the energy function E(Wl) for modality
uniqueness is defined as

E(Wl) = ηtr{h(Bl(X
1/2)TWlX

1/2)}
+ ‖Wl(Xl −DlΛl)‖2F .

(11)

This novel SVM energy function enables us to encode more
modality-specific properties on Wl. Furthermore, it can still
be easily solved using existing SVM solvers.

Specifically, with Vl = Xl −DlΛl, it can be simplified as

ηtr{h(Bl(X
1/2)TWlX

1/2)}+ ‖WlVl‖2F . (12)

With a feature X̃ = V+
l X, where V+

l means the Moore-
Penrose pseudo inverse of Vl, we learn W̃l = WlVl by
minimizing the following energy function

E(W̃l) = ηtr{h(Bl(X̃
1/2)TW̃lX̃

1/2)}+ ‖W̃‖2F . (13)

Using learned weight W̃l, the final weight can be estimated
such that Wl = W̃lV

+
l . In experiments, we used LIB-SVM

[72] to minimize the objective function E(W̃l).
Computing Dl and D̃: For updating modality dictionary D
and D̃ with fixing W and Λ, our energy function in (7) in
terms of dictionary D is derived as

E(D) =
∑

l∈Φm

E(Dl). (14)

This energy function E(D) can be solved independently for
each E(Dl) with fixed D̃ such that

E(Dl) =‖Wl(Xl −DlΛl)‖2F + τ‖D̃−Dl‖2F
s.t. ∀l, u, ‖dl,u‖2 < 1,

(15)

which is a quadratically constrained quadratic program
(QCQP) with respect to Dl, and the solutions can be found
using the Lagrange dual technique [73]. In experiments, we
used the CVX convex optimization toolbox [74]. This energy
function is formulated with incoherent dictionary D̃; thus, it
should be solved iteratively with a fixed D̃.

The incoherent dictionary D̃ can be simply computed using
the following energy function

E(D̃) =
∑

l∈Φm

τ‖D̃−Dl‖2F . (16)

By minimizing the energy function, the incoherent modality
dictionary can be just computed as the average of Dl without
any optimization scheme such that D̃ =

∑
l Dl/Nm.

Computing Λl: For updating sparse coefficient matrix Λ with
fixing W, D, and D̃, our energy function in (7) in terms of
a sparse coefficient Λ is derived as

E(Λ) =
∑

l∈Φm

E(Λl). (17)

This energy function E(Λ) can be solved independently for
each E(Λl) such that

E(Λl) = ‖Wl(Xl −DlΛl)‖2F + λ|Λl|1. (18)

It can be solved using a sparse coding solver. In experi-
ments, we used the SPAMS toolbox [71].

After updating all Wl, Dl, D̃, and Λl, our framework
iteratively infers the modality cluster index Cl for the training
image set as the assignment step. The assignment and update
steps can be computed iteratively until they converge.

D. Modality-Invariant Marginalized Kernel

Many discriminative learning methods, such as SVM [67],
have focused on computing a similarity kernel, e.g., it can
be simply defined as the inner production Klinear(xi,xj) =
xT
i xj . As a more complex case, the Gaussian kernel can be

used such that KGaussian(xi,xj) = exp(−‖xi − xj‖22/σ).
However, as described in Sec. III-A, leveraging these existing
kernels directly is not well suited for training images under
challenging modality variations.

In the following, we make use of the modality uniqueness
and modality dictionary to design a new marginalized kernel
as K(xi,xj) in (2). It is formulated with the assumption that
training images cannot belong to one specific modality cluster;
rather, they might be derived from multiple modalities. There-
fore, our kernel is computed by aggregating the similarities of
each cluster with the corresponding probability.

First of all, based on modality uniqueness wl and modality
dictionary Dl, the probability P(ml|xi) in (2) can be defined
with the reconstruction error P(xi,wl,Dl) in (9) such that

P(ml|xi) = 1− P(xi; wl,Dl)∑
l′∈Φm

P(xi; wl′ ,Dl′)
. (19)
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Here, it means that if xi is derived from modality condition
ml, P(xi; wl,Dl) would be small, then P(ml|xi) is closed
to 1. Otherwise, P(ml|xi) is closed to 0.

Secondly, to derive joint modality-kernel Kml,ml′ (xi,xj)
in (2), we also leverage modality uniqueness wl and modal-
ity dictionary Dl. With the latent modality ml for xi and
ml′ for xj , the reconstructed feature with the corresponding
dictionary is Dlαi and Dl′αj , respectively. Their weighted
version using modality uniqueness can be denoted such that
Ω(xi;ml) ' wl � Dlαi and Ω(xj ;ml′) ' wl′ � Dl′αj ,
where αi and αj are sparse coefficients of xi and xj , re-
spectively. As described in Sec. III-B, in the weighted feature
space, modality-specific properties can be more boosted. Using
the Klinear(xi,xj), our kernel function is computed as the
inner product similarity of weighted features, Ω(xi;ml) and
Ω(xj ;ml′), for each modality. Specifically, the joint-modality
kernel Kml,ml′ (xi,xj) in (2) is defined such that

Kml,ml′ (xi,xj) = Sml,ml′K
linear(Ω(xi;ml),Ω(xj ;ml′))

= Sml,ml′ (wl �Dlαi)
T (wl′ �Dl′αj),

(20)

where Sml,ml′ is the similarity between two modalities, ml

and ml′ , with 0 ≤ Sml,ml′ ≤ 1. It should be noted that
our joint modality kernel also can be formulated by using
more complex kernel such as KGaussian(xi,xj), which might
improve the performance while requiring more complexity.
But, considering the trade-off between efficiency and accuracy,
our kernel is defined using linear function, enough to provide
satisfactory performance.

Now, based on the modality probability P(ml|xi) and the
joint modality kernel Kml,ml′ (xi,xj), the K(xi,xj) in (2) can
be defined. However, to formulate a general kernel function
in discriminative learning, the kernel needs to be positive
semi-definite (PSD) [67]. Since PSD kernels are closed under
addition and multiplication, the K(xi,xj) is PSD as long as
the joint kernel Kml,ml′ (xi,xj) is PSD itself. In our case, a
simple way to satisfy the PSD constraint consists of setting
Sml,m′

l
= 1 when ml = ml′ and 0 otherwise similar to [67].

Then, Kml,ml′ (xi,xj) can be simplified to only consider the
cases where ml = ml′ such that

Kml
(xi,xj) = (wl �Dlαi)

T (wl �Dlαj), (21)

which leads to the following final kernel K̃(xi,xj) such that

K̃(xi,xj) =
∑

l∈Φm

P(ml|xi)P(ml|xj)Kml
(xi,xj). (22)

Note that K̃(xi,xj) based classifier learning can be considered
as multiple kernel learning (MKL) [38] whose robustness has
been proven. Compared to a simple linear combination [38], it
is formulated as a probabilistic combination for each modality,
which provides robustness for modality variations.

Using K̃(xi,xj), we finally train the modality-invariant
SVM classifier H(St) from training image set St. Algorithm
1 summarizes our modality-invariant image categorization.

E. Unsupervised Modality Clustering Initialization

The iterative scheme in unsupervised modality clustering
requires an initial cluster hypothesis. However, conventional

clustering methods, such as k-means or spectral clustering
[75], cannot estimate modality-specific clusters well, since
global feature descriptors might be simultaneously influenced
by two components: category-driven and modality-driven sim-
ilarities. In this section, to divide the training image set into
fully modality-specific image sub-sets, we propose a modality
spectral clustering scheme.

First, for a training image set, we construct a similarity
graph G = (V, E) with the vertex set V = {v1, ..., vNt

} on
the feature descriptor X = [x1, ...,xNt

] and E is a set of
links. An undirected edge exists if two vertices xi,xj ∈ V
are adjacent. In our approach, the k-nearest neighbor (k-nn)
system is used to construct E . To build a modality-specific im-
age similarity graph G, not a category-specific one, each query
image finds the k-nn on different class training image sets. It
is derived from the same insight that feature distribution can
be determined by class categories and modality categories. By
excluding images found by compulsively using the similarity
of class categories, we can find the candidate images in terms
of modality. Specifically, for feature xi from corresponding
class category yi, the k-nn are found in other-class label image
set St/S

yi

t , where Syi

t is the training image set with the same
class category as yi. This simple scheme enables us to reduce
the effect of category-specific similarities, and to focus on the
effect of modality-specific similarities.

For the set of k-nn links, using the distance function as
d(xi,xj) = ‖xi − xj‖22, we compute a weighted adjacency
function ωi,j ∈ W , where W is a set of Nt ×Nt, such that

ωi,j = exp (−d(xi,xj)/σ) , xi,xj ∈ V, (23)

where σ is a range bandwidth. Then, the affinity and corre-
sponding degree matrices of the graph G can be described
as W = [ωi,j ]i,j=1,...,Nt

and D = diag[di, ..., dNt
] where

di =
∑

j ωi,j . With the graph G and its corresponding W
and D, we determine the number of latent modalities in the
training image set, and divide the training image set into latent
modality as following.

1) The Number of Modality Clusters: Based on the affinity
matrix W from the graph G = (V, E), the number of clusters
Nm can be estimated. Since each element of the affinity
matrix W defines a distance in the feature space, the affinity
matrix will have a block diagonal structure when there are
definite groupings or clusters within the data sample [76]. It
is worth noting that for affinity functionW defined in (23), the
following approximation holds, due to the convolution theorem
for Gaussian [76] such that

1

N 2
t

∑
i∈Φt

∑
j∈Φt

ωi,j =
1

N 2
t

1T
Nt
W1Nt

, (24)

where 1Nt
is the Nt× 1 dimensional vector with elements of

value 1. An eigenvalue decomposition on the affinity matrix
gives W = UWΣWUT

W , where the columns of the matrix
UW are the individual eigenvectors uWi of affinity and the
diagonal matrix ΣW contains associated eigenvalues denoted
as λWi . Then, we can rewrite 1T

Nt
W1Nt

in (24) such that

1T
Nt

(∑
i∈Φt

λiuiu
T
i

)
1Nt =

∑
i∈Φt

λWi
(
1T
Nt
uWi
)2
. (25)



IEEE TRANSACTION ON IMAGE PROCESSING 8

Algorithm 1: Modality-Invariant Image Categorization (MIIC)
Input: training image set St.
Output: modality uniqueness wl, dictionary Dl, incoherent dictionary D̃,
cluster Cl, SVM classifier H(St).
Parameters and Notation
Nm: the number of clusters.
Λl: sparse coefficient matrix for cluster Cl.

/∗ Initialization ∗/
1: Encode an image Ii from St into features xi = Ψ(Ii).
2: Construct a graph G = (V, E) from modality-specific k-nn images.
3: Determine the number of clusters Nm.
4: Initialize cluster Cl from St using a modality spectral clustering.
5: Initialize modality uniqueness wl, dictionary Dl and sparse coefficient

Λl for each cluster Cl, and incoherent dictionary D̃.
while not converged do

/∗ Assignment Step ∗/
6: Assign training images from St into cluster Ci using (9).

/∗ Update Step ∗/
7: Estimate modality uniqueness wl by optimizing (11).
8: Estimate dictionary Dl by optimizing (15).
9: Estimate incoherent dictionary D̃ by optimizing (16).
10: Estimate sparse coefficient Λl by optimizing (18).

end while
11: Construct modality-invariant kernel K̃(xi,xj) in (22).
12: Construct modality-invariant SVM classifier H(St).

This indicates that if there are Nm distinct clusters within
the data samples, there areNm dominant terms λWi

(
1T
Nt
uWi
)2

in the summation. In other words, the number of clusters
Nm can be obtained by analyzing the dominant terms of
λWi

(
1T
Nt
uWi
)2

. By plotting log(λWi
(
1T
Nt
uWi
)2

) with respect
to i, a curve with an apparent elbow can be obtained. By
finding the elbow of this plot, we can obtain the optimal
number of clusters Nm prior to the classification.

2) Modality Spectral Clustering: Based on the number of
clusters Nm as in Sec. III-E1, we initially divide the training
images St into the initial modality cluster Cl. We use a spectral
clustering scheme [77] for the initial clustering. From graph
G, the un-normalized graph Laplacian matrix is computed as

L = D −W. (26)

An eigenvalue decomposition on the Laplacian matrix gives
L = ULΛLUT

L , wherethe columns of matrix UL are the
eigenvectors uLi and the diagonal matrix ΛL contains the as-
sociated eigenvalues denoted as λLi . By using the first r eigen-
vectors uL1 , ..., u

L
r , the features xi for i = 1, ...,Nt are clus-

tered using the k-means clustering into clusters C1, ..., CNm .

IV. EXPERIMENTAL RESULTS

A. Experimental Environments

In the following experiments, our modality-invariant image
classification framework was implemented with the same
parameter settings for all datasets: {λ, τ, η} = {0.5, 0.01, 0.1}.
We employed cross-validation in order to estimate the param-
eters, and all parameters were fixed during the experiments.
We implemented our approach in C++ on an Intel Core i7-
3770 3.40 GHz CPU. As described in the above sections, any
other global feature descriptors can be incorporated into our
modality-invariant image classification (MIIC) approach. To
evaluate our framework, we used various global feature de-
scriptors, including BoW [4], GIST [26], ScSPM [6], LLC [7],

(a) Sunny (b) Cloudy

(a) Snowy (b) Sunset
Fig. 5. Examples of landmark identification images [23] under different image
modality conditions, such as sunny, cloudy, snowy, and sunset.

TABLE I
COMPARISON OF QUANTITATIVE EVALUATION ON LANDMARK

IDENTIFICATION UNDER CHALLENGING WEATHER VARIATIONS.

classifier descriptor dimension mAP (%)

SVM
w/linear
kernel

[66]

BoW [4] 1024d 36.15±0.7%
GIST [26] 512d 48.14±1.4%
ScSPM [6] 5120d 46.18±1.1%
LLC [7] 5120d 50.12±1.0%
VLAD [8] 8192d 52.72±2.1%
CNN [1] 4096d 64.11±2.7%

SVM
w/

Gaussian
kernel

[66]

BoW [4] 1024d 40.35±1.7%
GIST [26] 512d 52.24±2.5%
ScSPM [6] 5120d 51.51±2.1%
LLC [7] 5120d 55.41±1.2%
VLAD [8] 8192d 60.51±2.4%
CNN [1] 4096d 70.51±3.1%

MIIC
w/MKL

[38]

BoW [4] 1024d 51.11±0.4%
GIST [26] 512d 54.14±1.0%
ScSPM [6] 5120d 57.11±1.1%
LLC [7] 5120d 59.19±0.7%
VLAD [8] 8192d 60.11±0.9%
CNN [1] 4096d 73.16±1.8%

MIIC
w/GMKL

[78]

BoW [4] 1024d 50.82±1.3%
GIST [26] 512d 56.10±1.7%
ScSPM [6] 5120d 60.11±3.0%
LLC [7] 5120d 65.11±1.1%
VLAD [8] 8192d 68.11±2.3%
CNN [1] 4096d 76.11±1.8%

MIIC

BoW [4] 1024d 56.15±1.6%
GIST [26] 512d 60.11±2.1%
ScSPM [6] 1024d 68.58±1.9%
LLC [7] 1024d 70.51±1.0%
VLAD [8] 1024d 72.41±2.2%
CNN [1] 4096d 87.51±2.3%

VLAD [8], and CNN [1]. To evaluate the performance of the
unsupervised clustering, our framework was compared to la-
tent domain-clustering methods [40], [41], [79]. Furthermore,
we examined the performance gains of the modality clustering
in our approach, including the modality uniqueness, dictinoary,
and incoherent dictionary. To evaluate our kernel embedding,
we additionally examined the performance contributions of
the kernel functions, including multi-modality projection and
probability-based projection.



IEEE TRANSACTION ON IMAGE PROCESSING 9

Bas
il

Berl
in

Bigb
en
Bran

d
Edin

b
Eiff

el

For
bid Je

ru
Kink

Lou
vr

Niag
a

Osa
ka

Sain
t

Ston
e

Tow
er

W
hit

e

0.48

0.16

0.10

0.19

0.30

0.10

0.11

0.10

0.10

0.20

0.16

0.10

0.57

0.42

0.23

0.20

0.21

0.11

0.45

0.11

0.27

0.12

0.13

0.16

0.78

0.11

0.46

0.10

0.56

0.16

0.49

0.20

0.11

0.15

0.16

0.10

0.49

0.12

0.12

0.12

0.51

Basil

Berlin

Bigben

Brand

Edinb

Eiffel

Forbid

Jeru

Kink

Louvr

Niaga

Osaka

Saint

Stone

Tower

White

(a) BoW+SVM [66]
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(b) BoW+MIIC

Bas
il

Berl
in

Bigb
en
Bran

d
Edin

b
Eiff

el

For
bid Je

ru
Kink

Lou
vr

Niag
a

Osa
ka

Sain
t

Ston
e

Tow
er

W
hit

e

0.50

0.25

0.13

0.37

0.17

0.72

0.36

0.12

0.23

0.19

0.10

0.50

0.12 0.19

0.88

0.15

0.18

0.12

0.11

0.11

0.82

0.11

0.15

0.21

0.11

0.19

0.39

0.70

0.48

0.18

0.63

0.48

0.45

0.63

Basil

Berlin

Bigben

Brand

Edinb

Eiffel

Forbid

Jeru

Kink

Louvr

Niaga

Osaka

Saint

Stone

Tower

White

(c) GIST+SVM [66]
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(d) GIST+MIIC
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(e) ScSPM+SVM [66]
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(f) ScSPM+MIIC
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(g) LLC+SVM [66]
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(h) LLC+MIIC
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(i) VLAD+SVM [66]
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(j) VLAD+MIIC
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(k) CNN+SVM [66]
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(l) CNN+MIIC
Fig. 6. Confusion matrix evaluations for landmark identification [23] under challenging weather conditions. For a variety of global feature descriptors such
as BoW [4], GIST [26], ScSPM [6], LLC [7], VLAD [8], and CNN [1], our MIIC highly improves the classification performance compared to SVM.

For a qualitative evaluation of classification performance,
the mean accuracy probability (mAP) was computed while
varying the ratio of the training and testing image sets for each
evaluation benchmark. Our method was evaluated for image
classification on various benchmarks: landmark identification
under challenging weather varitions, object recognition under
varying domain configurations [24], and RGB-NIR image clas-
sification [25]. The novel landmark-identification benchmark
can be found on our project page [23].

1) Global Feature Descriptor: To evaluate our framework,
we utilized six global feature descriptors:

• BoW: Bag-of-words [4] represents an image as an or-
derless histogram of local features. In experiments, we
computed a histogram for 1024-dimension quantized vi-
sual words for densely sampled SIFT features [5].

• GIST: The GIST descriptor [26] constructs a low-
dimension description of the scene structure based on
various orientation and scale filter responses. In exper-
iments, we computed Gabor filters with three scales and

eight initial parameters from Torralba [26], which provide
the dimension of 512.

• ScSPM: Sparse-coding spatial-pyramid matching [6] ex-
tends SPM [27] by generalizing the vector quantization
to sparse coding followed by multi-scale spatial max
pooling. Similar to the BoW features, we used published
code. The feature dimension is 5120.

• LLC: Locality linear coding [7] extends ScSPM by
leveraging a simple but effective coding scheme called
locality-constrained linear coding in the vector quantiza-
tion coding in traditional SPM, whose feature dimension
is 5120.

• VLAD: Vector of locally aggregated descriptors [8] di-
vides an image into features using principal component
analysis (PCA). In experiments, we used user-provided
code, and the feature dimension is 8192.

• CNN: Deep convolutional neural networks [1] represents
an image using convolutional responses in a deep ar-
chitecture. In experiments, we utilized ImageNet based
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TABLE II
COMPARISON OF QUANTITATIVE EVALUATION FOR DOMAIN ADAPTATION AS UNSUPERVISED SETTINGS.

Domain Unsupervised
source target ARC-t [20] K-SVD [64] SGF [16] GFK [35] Sub. Int. [80] ADD [17] MIIC
Caltech Amazon 18.4±1.2% 20.5±0.8% 36.8±0.5% 40.4±0.7% 45.4±0.3% 50.1±0.4% 56.2±0.8%
Caltech DSLR 17.5±0.2% 19.8±1.0% 32.6±0.7% 41.1±1.3% 42.3±0.4% 41.5±0.3% 45.1±0.2%
Amazon Caltech 23.5±0.2% 20.2±0.9% 35.3±0.5% 37.9±0.4% 40.4±0.5% 38.2±0.1% 47.1±0.1%
Amazon Webcam 20.1±0.7% 16.9±1.0% 31.0±0.7% 35.7±0.9% 37.9±0.9% 32.5±0.7% 39.4±0.4%
Webcam Caltech 21.2±1.0% 13.2±0.6% 21.7±0.4% 29.3±0.4% 36.3±0.3% 30.1±0.4% 47.2±1.0%
Webcam Amazon 16.2±0.4% 14.2±0.7% 27.5±0.5% 35.5±0.7% 38.3±0.3% 30.6±0.1% 47.9±0.2%
DSLR Amazon 22.2±0.1% 14.3±0.3% 32.0±0.4% 36.1±0.4% 39.1±0.5% 38.2±0.2% 49.6±0.6%
DSLR Webcam 51.8±0.9% 46.8±0.8% 66.0±0.7% 79.1±0.7% 86.2±1.0% 66.1±0.2% 88.2±0.4%

TABLE III
COMPARISON OF QUANTITATIVE EVALUATION FOR DOMAIN ADAPTATION AS SEMI-SUPERVISED SETTINGS

Domain Semi-supervised
source target ARC-t [20] K-SVD [64] SGF [16] GFK [35] Sub. Int. [80] ADD [17] MIIC
Caltech Amazon 28.7±1.0% 31.2±1.0% 40.2±0.7% 46.1±0.6% 50.0±0.5% 47.2±0.3% 64.2±0.2%
Caltech DSLR 29.2±0.8% 34.6±1.0% 36.6±0.8% 55.0±0.9% 57.1±0.4% 50.1±0.6% 65.1±0.2%
Amazon Caltech 29.2±1.1% 25.2±0.7% 37.7±0.5% 39.6±0.4% 41.5±0.8% 40.1±0.8% 49.5±1.0%
Amazon Webcam 30.5±0.2% 42.7±0.6% 37.9±0.7% 56.9±1.0% 57.8±0.5% 50.7±0.1% 64.2±0.3%
Webcam Caltech 20.2±0.5% 23.4±0.4% 29.2±0.7% 32.8±0.7% 40.6±0.4% 40.2±0.8% 54.3±0.2%
Webcam Amazon 30.5±1.0% 32.9±0.7% 38.2±0.6% 46.2±0.7% 51.5±0.6% 49.2±0.2% 63.5±0.8%
DSLR Amazon 29.7±0.2% 31.2±0.2% 39.2±0.7% 46.2±0.6% 50.3±0.2% 47.1±0.7% 64.9±0.2%
DSLR Webcam 50.1±0.4% 49.9±1.4% 69.5±0.5% 80.2±0.4% 82.8±1.0% 69.1±0.1% 79.2±0.4%

(a) Amazon (b) DSLR

(c) Webcam (d) Caltech
Fig. 7. Examples of domain adapting images under varying domains such as
Amazon, DSLR, Webcam, and Caltech [24].

learning parameters by using MatConvNet [81]. For a
feature descriptor, we used the final activations from the
fully-connected layer, thus the dimension is 4096.

B. Landmark Identification Across Weather Variations

1) Landmark Identification Benchmark: To evaluate the im-
age classification performance under modality variations, we
constructed a novel landmark-identification benchmark taken
under varying weather conditions. The database consists of 17
landmark images taken under several weather conditions, e.g.,
sunny, cloudy, snowy, and sunset. These images were found on
Flickr [82], Google [83], and Bing [84]. Each landmark dataset
consists of 150 images, for a total 2550 images. Examples of
landmark images under weather variations are shown in Fig.
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Fig. 8. Confusion matrix evaluations for domain-adapting object recognition.

5. The landmark-identification benchmark can be accessed on
our project page [23].

2) Evaluation: We evaluated our MIIC by incorporating
various global feature descriptors, e.g., BoW [4], GIST [26],
ScSPM [6], LLC [7], VLAD [8], and CNN [1]. Since the
main performance gain of our framework comes from a
novel similarity kernel function, our method was evaluated
compared to SVM with linear (SVM w/linear kernel) and
Gaussian kernel functions (SVM w/Gaussian kernel) [66].
Furthermore, to evaluate the modality uniqueness weights and
modality probability in the proposed kernel, we formulated
our MIIC as a varying aggregation scheme, such that the linear
kernels between reconstructed features for each modality were
aggregated with MKL (MIIC w/MKL) [38] and general MKL
(MIIC w/GMKL) [78]. Table I shows a comparison of the
qualitative evaluation, and Fig. 6 shows the confusion-matrix
evaluation for landmark identification.

As expected, compared to conventional methods [4], [6]–
[8], [26], CNN-based methods showed the best classification
performance [1]. However, the performance of global descrip-
tors combined with SVM using a linear kernel was limited.
Even though the SVM with a Gaussian kernel improved the
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TABLE IV
COMPARISON OF QUANTITATIVE EVALUATION ON DOMAIN-ADAPTING

OBJECT RECOGNITION.

classifier descriptor dimension mAP (%)

SVM
w/linear
kernel
[66]

BoW [4] 1024d 37.21±1.2%
GIST [26] 512d 54.97±3.5%
ScSPM [6] 5120d 54.11±1.1%
LLC [7] 5120d 57.11±1.0%
VLAD [8] 8192d 59.11±3.4%
CNN [1] 4096d 69.11±1.1%

MIIC
w/MKL

[38]

BoW [4] 1024d 39.11±0.2%
GIST [26] 512d 56.36±1.5%
ScSPM [6] 5120d 56.81±2.2%
LLC [7] 5120d 59.72±2.0%
VLAD [8] 8192d 61.73±1.4%
CNN [1] 4096d 72.21±2.1%

MIIC
w/GMKL

[78]

BoW [4] 1024d 42.11±2.8%
GIST [26] 512d 60.17±0.5%
ScSPM [6] 5120d 62.83±1.2%
LLC [7] 5120d 60.21±2.0%
VLAD [8] 8192d 62.83±1.4%
CNN [1] 4096d 76.21±0.7%

MIIC

BoW [4] 1024d 44.25±1.0%
GIST [26] 512d 62.21±3.1%
ScSPM [6] 5120d 67.18±1.2%
LLC [7] 5120d 68.21±2.2%
VLAD [8] 8192d 70.11±1.8%
CNN [1] 4096d 84.11±1.3%

(a) RGB (b) NIR
Fig. 9. Examples of RGB-NIR images for image classification.

classification performance to some extent, it also showed
unsatisfactory performance. Compared to these methods, our
MIIC method dramatically improved the classification perfor-
mance when combined with any descriptor.

C. Domain-Adapting Object Recognition

1) Benchmark: To evaluate our framework compared with
other methods for domain adaptation, we used the domain-
adaptation dataset introduced by [24], where images from
the same object categories are from different sources (called
domains). The first three datasets were collected by [24],
which include images from amazon.com (Amazon), taken
by digital single-lens reflex (DSLR) and webcam (Webcam).
The fourth dataset is Caltech-256 (Caltech). Each dataset
constitutes one domain. Following the experimental settings
in [16], we evaluated our approach for object recognition on
four datasets, with a total of 2533 images from 10 categories.

2) Evaluation: For a fair evaluation with existing methods,
we first evaluated the performance of domain-adapting image
classification using the BoW feature [4]. The proposed MIIC
was compared with ARC-t [20], K-SVD [64], SGF [16], GFK
[35], subspace interpolation (Sub. Int.) [80], and adaptive
descriptor design (ADD) [17]. Following [16], we used a

TABLE V
COMPARISON OF QUANTITATIVE EVALUATION ON RGB-NIR IMAGE

CLASSIFICATION.

classifier descriptor dimension mAP (%)

SVM
linear
kernel
[66]

BoW [4] 1024d 35.65±0.7%
GIST [26] 512d 50.74±1.3%
ScSPM [6] 5120d 49.51±2.1%
LLC [7] 5120d 50.11±0.2%
VLAD [8] 8192d 62.17±0.4%
CNN [1] 4096d 68.51±2.1%

MIIC

BoW [4] 1024d 56.15±1.6%
GIST [26] 512d 60.11±2.1%
ScSPM [6] 5120d 68.58±1.9%
LLC [7] 5120d 70.51±1.0%
VLAD [8] 8192d 72.41±2.2%
CNN [1] 4096d 87.51±2.3%
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Fig. 10. Confusion matrix evaluations for RGB-NIR image classification.

speeded-up robust features (SURF) to extract interest points,
and built BoW feature whose dimension is 800. We report
the performance for eight different pairs of source and target
combinations. In unsupervised settings, we randomly selected
8 labeled images per category for Webcam/DSLR/Caltech
and 20 for Amazon as the source domain. To completely
evaluate existing methods, we also carried out experiments
in a semi-supervised setting where we additionally sampled
3 labeled images per category from the target domain. We
ran 20 different trials corresponding to different selections of
labeled data from the source and target domains. The average
recognition rate and standard deviation are reported in Table
II and Table III for unsupervised and semi-supervised setting,
respectively. It is worth noting that our MIIC method does not
use any domain labels; rather, it estimates the optimal modality
clusters based on the training set. Compared to existing
domain-adaptation methods, e.g., ARC-t [20], K-SVD [64],
SGF [16], GFK [35], Sub. Int. [80], and ADD [17], our MIIC
method provided satisfactory image classification performance
for both unsupervised and semi-supervised settings.

Furthermore, similar to the experimental settings in Sec.
IV-B1, we measured the mAP while varying the feature
descriptors. We evaluated our MIIC by incorporating various
feature descriptors, e.g., BoW [4], GIST [26], ScSPM [6], LLC
[7], VLAD [8], and CNN [1]. As expected, compared to these
global descriptors combined with a linear-kernel SVM, which
shows limited classification performance, our MIIC method
dramatically improved the classification performance when
combined with any global descriptor.
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TABLE VI
EVALUATION OF COMPONENT CONTRIBUTION ON UNSUPERVISED

MODALITY CLUSTERING IN MIIC.

methods Amazon Caltech DSLR Webcam
Kulis et al. [79] 35.17% 45.29% 31.32% 30.72%
Gong et al. [41] 50.12% 52.78% 53.94% 50.12%
Hoffman et al. [40] 60.11% 56.72% 59.14% 60.70%
MIIC w/dic. 79.21% 59.42% 79.24% 69.12%
MIIC w/inco. dic. 80.12% 68.11% 71.24% 74.19%
MIIC 82.17% 63.97% 92.43% 77.12%

TABLE VII
EVALUATION OF COMPONENT CONTRIBUTION ON MARGINALIZED

KERNELIZATION IN MIIC.

descriptors SVM
w/lin. [66]

MIIC
w/mult.-lin.

MIIC
w/prob.-lin. MIIC

BoW [4] 36.15±0.7% 50.38±1.0% 52.70±1.6% 56.15±1.6%
GIST [26] 48.14±1.4% 53.71±1.1% 57.79±0.1% 60.11±2.1%
ScSPM [6] 46.18±1.1% 54.11±0.9% 62.72±1.9% 68.58±1.9%
LLC [7] 50.12±1.0% 57.88±2.1% 66.71±1.2% 70.51±1.0%
VLAD [8] 52.72±2.1% 60.72±1.2% 67.91±1.7% 72.41±2.2%
CNN [1] 64.11±2.7% 77.11±1.3% 83.72±1.7% 87.51±2.3%

D. RGB-NIR Image Classification

1) Benchmark: To evaluate our image classification method
for multi-spectral images, we adopted the RGB-NIR database
[25], as shown in Fig. 9. It consists of 477 images with 9 cat-
egories as follows: country, field, forest, indoor, mountain, old
building, street, urban, and water. The images were processed
using automatic white balancing for the RGB components, and
the NIR components were equally weighted with standard gain
control and gamma correction [25]. We performed image clas-
sification on this dataset of 477 images, randomly selecting 99
images for testing (11 per category) and using the remaining
images for training. We repeated all our experiments using 10
trials with a randomly selected training/test ratio, following
the experimental settings of [25].

2) Evaluation: Similar to the above experiments, we eval-
uated MIIC by incorporating various global descriptors, e.g.,
BoW [4], GIST [26], ScSPM [6], LLC [7], VLAD [8], and
CNN [1]. We compared the MIIC with SVM using a linear
kernel [66]. Fig. 10 shows the confusion-matrix evaluations
for the RGB-NIR image classification, and Table V shows the
comparison of quantitative evaluation for the RGB-NIR image
classification. As expected, the global features combined with
SVM [66] provided limited performance, since the similarity
from semantic categories across RGB-NIR images might be
lower than the similarity within RGB (or NIR) images. Global
features combined with MIIC outperformed hose combined
with SVM [66].

E. Component Contribution Analysis

1) Component Contribution on Modality Clustering: In this
section, we analyzed the performance gain of our unsupervised
modality clustering. Our clustering method consisted of three
key ingredients: modality uniqueness, dictionary, and inco-
herent dictionary. In this context, we analyzed the accuracy
gain of our framework on the domain adaptation benchmark
in Table VI, for which we know the ground truth domain
labels, e.g., Amazon, Caltech-256, DSLR, and Webcam. We
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Fig. 11. Convergence analysis of our MIIC framework. MIIC was converged
into globally optimal accuracy after some iterations.

evaluated our modality-clustering method performance com-
pared to latent domain-clustering methods [40], [41], [79]. The
performance gain of our clustering was evaluated with 1) only
the dictionary (MIIC w/dic.), 2) dictionary with incoherent
dictinary (MIIC w/inco. dic.), and 3) dictionary and incoherent
dictinary with modality uniquess (MIIC), which is our final
method. For fair evaluation of our framework, we assigned the
ground truth domain labels in initialization, split the training
image set into specific domains using our method, and then
estimated the clustering performance on testing image sets
with ground truth domain labels. As baselines [40], [41],
[79], we used implementation settings similar to [40]. In these
settings, our clustering framework explicitly outperformsed
the conventional domain-clustering methods [40], [41], [79].
By leveraging the modality uniqueness and dictionary, our
clustering framework provided reliable performance.

2) Component Contribution on Marginalized Kernelization:
In this section, to evaluate the performance gain of our
modality-invariant marginalized kernelization, we compared
SVM using a linear kernel [66], multiple linear kernels on
modality clusters (MIIC w/mult.-lin.), probabilistic multiple
linear kernels on modality clusters (MIIC w/prob.-lin.), and
our kernel function (MIIC) for various global features in
Table VII. We analyzed the performance using the landmark-
identification benchmark [23]. For all global features, the
multiple linear kernel scheme outperformed SVM with a
linear kernel, which was also shown in MKL [38]. Using the
probability for the modality cluster, the clustering performance
was highly improved. By futher measuring the kernel function
with reconstruced features on each modality cluster, our MIIC
showed satisfactory performances.

3) Convergence Analysis: To evaluate the convergence of
our MIIC framework as an iterative scheme, we measured the
mAP on the landmark-identification benchmark [23], evolving
the number of iterations. It should be noted that one iteration
means that all update steps in Sec. III-C are processed.
For each modality, if the optimal modality uniqueness and
dictionary can be estimated, our energy function in (7) for
unsupervised modality clustering cannot vary any more, which
provides optimal clustering results. Fig. 11 shows the con-
vergence analysis of our modality-clustering scheme, while
varying the global feature descriptors. Our MIIC framework
converged to a global minimum after some iterations.
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V. CONCLUSION

The modality-invariant image classification (MIIC) frame-
work was proposed for classifying images taken under varying
modality conditions. Based on the observation that semantic
and modality category labels simultaneously influence the
image feature distribution, the modality uniqueness concept
was introduced to encode each distinctive property for each
modality. By leveragining this, unsupervised modality clus-
tering and modality-invariant similarity kernel-based classifier
learning were represented. The optimal cluster hypothesis and
their correspoding modality uniqueness and dictionary were
determined iteratively, and the modality-invariant marginalized
kernel was computed based on the final clusters. Our MIIC
method was validated on an extensive set of experiments. In
future work, MIIC can potentially benefit from a large-scale
image classification.
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