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Abstract. We present a method for jointly predicting a depth map and
intrinsic images from single-image input. The two tasks are formulated in
a synergistic manner through a joint conditional random field (CRF) that
is solved using a novel convolutional neural network (CNN) architecture,
called the joint convolutional neural field (JCNF) model. Tailored to our
joint estimation problem, JCNF differs from previous CNNs in its sharing
of convolutional activations and layers between networks for each task,
its inference in the gradient domain where there exists greater correlation
between depth and intrinsic images, and the incorporation of a gradient
scale network that learns the confidence of estimated gradients in order
to effectively balance them in the solution. This approach is shown to
surpass state-of-the-art methods both on single-image depth estimation
and on intrinsic image decomposition.

Keywords: single-image depth estimation, intrinsic image decomposi-
tion, conditional random field, convolutional neural networks

1 Introduction

Perceiving the physical properties of a scene undoubtedly plays a fundamental
role in understanding real-world imagery. Such inherent properties include the
3-D geometric configuration, the illumination or shading, and the reflectance or
albedo of each scene surface. Depth prediction and intrinsic image decomposi-
tion, which aims to recover shading and albedo, are thus two fundamental yet
challenging tasks in computer vision. While they address different aspects of
scene understanding, there exist strong consistencies among depth and intrinsic
images, such that information about one provides valuable prior knowledge for
recovering the other.

In the intrinsic image decomposition literature, several works have exploited
measured depth information to make the decomposition problem more tractable
[1–5]. These techniques have all demonstrated better performance than using
RGB images alone. On the other hand, in the literature for single-image depth
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prediction, illumination-invariant features have been utilized for greater robust-
ness in depth inference [6, 7], and shading discontinuities have been used to
detect surface boundaries [8], suggesting that intrinsic images can be employed
to enhance depth prediction performance. Although the two tasks are mutually
beneficial, most previous research have solved for them only in sequence, by us-
ing estimated intrinsic images to constrain depth prediction [8], or vice versa [9].
We propose in this paper to instead jointly predict depth and intrinsic images
in a manner where the two complementary tasks can assist each other.

We address this joint prediction problem using convolutional neural networks
(CNNs), which have yielded state-of-the-art performance for the individual prob-
lems of single-image depth prediction [6, 7] and intrinsic image decomposition
[9–11], but are hampered by ambiguity issues that arise from limited training
sets. In our work, the two tasks are formulated synergistically in a joint condi-
tional random field (CRF) that is solved using a novel CNN architecture, called
the joint convolutional neural field (JCNF) model. This architecture differs from
previous CNNs in several ways tailored to our particular problem. One is the
sharing of convolutional activations and layers between networks for each task,
which allows each network to account for inferences made in other networks. An-
other is to perform learning in the gradient domain, where there exist stronger
correlations between depth and intrinsic images than in the image value domain,
which helps to deal with the ambiguity problem from limited training sets. A
third is the incorporation of a gradient scale network which jointly learns the
confidence of the estimated gradients, to more robustly balance them in the so-
lution. These networks of the JCNF model are iteratively learned in a piece-wise
manner using a unified energy function in a joint CRF.

Within this system, depth, shading and albedo are predicted in a coarse-to-
fine manner that yields more globally consistent results. Our experiments show
that this joint prediction outperforms existing depth prediction methods and
intrinsic image decomposition techniques on various benchmarks.

2 Related Work

Depth Prediction from a Single Image Traditional methods for this task
have formulated the depth prediction as a Markov random field (MRF) learning
problem [12–14]. As exact MRF learning and inference are intractable in general,
most of these approaches employ approximation methods, such as through linear
regression of depth with image features [12], learning image-depth correlation
with a non-linear kernel function [13], and training category-adaptive model
parameters [14]. Although these parametric models infer plausible depth maps
to some extent, they cannot estimate the depth of natural scenes reliably due to
their limited learning capability.

By leveraging the availability of large RGB-D databases, data-driven ap-
proaches have been actively researched [15, 16]. Konrad et al. [15] proposed a
depth fusion scheme to infer the depth map by retrieving the nearest images in
the dataset, followed by an aggregation via weighted median filtering. Karsch et
al. [16] presented the depth transfer (DT) approach which retrieves the nearest
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similar images and warps their depth maps using dense SIFT flow. Inspired by
this method, Choi et al. [17] proposed the depth analogy (DA) approach that
transfers depth gradients from the nearest images, demonstrating the effective-
ness of gradient domain learning. Although these methods can extract reliable
depth for certain scenes, there exist many others for which the nearest images are
dissimilar and unsuitable. Recently, Kong et al. [8] extended the DT approach
[16] by using albedo and shading for image matching as well as for detecting
contours at surface boundaries. In contrast to our approach, the intrinsic images
are estimated independently from the depth prediction.

More recently, methods have been proposed based on CNNs. Eigen et al. [6]
proposed multi-scale CNNs (MS-CNNs) for predicting depth maps directly from
a single image. Other CNN models were later proposed for depth estimation
[18], including a deep convolutional neural field (DCNF) by Fayao et al. [7] that
estimates depth on each superpixel while enforcing smoothness within a CRF.
CNN-based methods clearly outperform conventional techniques, and we aim to
elevate the performance further by accounting for intrinsic image information.

Intrinsic Image Decomposition The notion of intrinsic images was first in-
troduced in [19]. Conventional methods are largely based on Retinex theory [20–
22], which attributes large image gradients to albedo changes, and smaller gradi-
ents to shading. More recent approaches have employed a variety of techniques,
based on gradient distribution priors [23], dense CRFs [24], and hybrid L2-Lp
optimization to separate albedo and shading gradients [25]. These single-image
based methods, however, are inherently limited by the fundamental ill-posedness
of the problem. To partially alleviate this limitation, several approaches have uti-
lized additional input, such as multiple images [26–28], user interaction [29, 30],
and measured depth maps [1–5]. The use of additional data such as measured
depth clearly increases performance but reduces their applicability.

Related to our work is the method of Barron and Malik [31], which esti-
mates object shape in addition to intrinsic images. To regularize the estimation,
the method utilizes statistical priors on object shape and albedo which are not
generally applicable to images of full scenes.

More recently, intrinsic image decomposition has been addressed using CNNs
[9–11]. Zhou et al. [10] proposed a multi-stream CNN to predict the relative
reflectance ordering between image patches from large-scale human annotations.
Narihira et al. [11] learned a CNN that directly predicts albedo and shading
from an RGB image patch. Shelhamer et al. [9] estimated depth through a fully
convolutional network and used it to constrain the intrinsic image decomposition.
Unlike our approach, the depth and intrinsic images are estimated sequentially.

3 Formulation

3.1 Problem Statement and Model Architecture

Let us define a color image I such that Ip : I → R3 for pixel p, where I ⊂ N2

is a discrete image domain. Similarly, depth, albedo and shading can be defined
as Dp : I → R and Ap, Sp : I → R3. All of these image quantities are defined in
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Fig. 1. For an example from the MPI-SINTEL dataset [32], its (a) color image I, (b)
depth D, (c) albedo A, (d) shading S, and their corresponding gradient fields OI, OD,
OA, and OS shown below. Compared to quantities in the value domain, correlations
are stronger among gradient fields, such that estimates of one may help in learning
others. Furthermore, the gradient consistency between OI, OD, OA, and OS can be
used to estimate the confidence of each gradient.

the log domain. Given a training set of color, depth, albedo, and shading images
denoted by C = {

(
Ii, Di, Ai, Si

)
|i = 1, 2, ...,NC}, where NC is the number of

training images, we first aim to learn a prediction model that approximates depth
Di, albedo Ai, and shading Si from each color image Ii ∈ C. This prediction
model will then be used to infer reliable depth D, albedo A, and shading S
simultaneously from a single query image I.

We specifically learn the joint prediction model in the gradient domain, where
depth and intrinsic images generally exhibit stronger correlation than in the
value domain, as exemplified in Fig. 1. This greater correlation and reduced
discrepancy among OD, OA, and OS facilitate joint learning of the two tasks
by allowing them to better leverage information from each other1. We therefore
formulate our model to predict the depth, albedo, and shading gradient fields
from the color image. Our method additionally learns the confidence of predicted
gradients based on their consistency among one another in the training set.

We formulate this joint prediction using convolutional neural networks (CNNs)
in a joint conditional random field (CRF). Our system architecture is structured
as three cooperating networks, namely a depth prediction network, an intrinsic
prediction network, and a gradient scale network. The depth prediction network
is modeled by two feed-forward processes F(Ii;wD

F ) and F(Ii;wOD
F ), where

wD
F and wOD

F represent the network parameters for depth and depth gradients.
The intrinsic prediction network is similarly modeled by feed-forward processes
F(Ii;wOA

F ) and F(Ii;wOS
F ), where wOA

F and wOS
F represent the network pa-

rameters for albedo gradients and shading gradients. The gradient scale network
learns the confidence of depth, albedo and shading gradients using a feed-forward
process for each, denoted by G(OIi,OAi,OSi;wOD

G ), G(OIi,ODi,OSi;wOA
G ),

and G(OIi,ODi,OAi;wOS
G ), where wOD

G , wOA
G , and wOS

G are their respective
network parameters. The three networks in our system are jointly learned in a
manner where each can leverage information from the other networks.

1 O is a differential operator defined in the x- and y-direction such that O = [Ox,Oy].
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3.2 Joint Conditional Random Field

The networks in our model are jointly learned by minimizing the energy function
of a joint CRF. The joint CRF is formulated so that each task can leverage
information from the other complementary task, leading to improved prediction
in comparison to separate estimation models. Our energy function E(D,A, S|I)
is defined as unary potentials Eu and pairwise potentials Es for each task:

E(D,A, S|I) = Eu(D|I) + Eu(A,S|I)

+ λDEs(D|I, A, S) + λAEs(A|I,D, S) + λSEs(S|I,D,A),
(1)

where λD, λA, and λS are weights for each pairwise potential. In the training
procedure, this energy function is minimized over all the training images, i.e.,
by minimizing

∑
iE(Di, Ai, Si|Ii). For testing, given a query image I and the

learned network parameters, the final solutions of D, A, and S are estimated by
minimizing the energy function E(D,A, S|I).

Unary Potentials The unary potentials consist of two energy functions, Eu(D|I)
and Eu(A,S|I). The depth unary function Eu(D|I) is formulated as

Eu(D|I) =
∑

p

(
Dp −F(IP ;wD

F )
)2
, (2)

which represents the squared differences between depthsDp and predicted depths
from F(IP ;wD

F ), where P is the local neighborhood2 for pixel p. It can be con-
sidered as a Dirichlet boundary condition for depth pairwise potentials, which
will be described shortly.

The unary function Eu(A,S|I) for intrinsic images is used in minimizing the
reconstruction errors of color image I from albedo A and shading S:

Eu(A,S|I) =
∑

p
(Lp(Ip −Ap − Sp))2, (3)

where Lp = lum(Ip) + ε, and lum(I) denotes the luminance of I with ε = 0.001.
It has been noted that processing of luminance balances out the influence of the
unary potential across the image [1, 28], and that treating the image formation
equation (i.e., Ip = Ap + Sp) as a soft constraint can bring greater stability in
optimization [25], especially for dark pixels whose chromaticity can be greatly
distorted by sensor noise.

Pairwise Potentials The pairwise potentials, which include Es(D|I, A, S),
Es(A|I,D, S), and Es(S|I,D,A), represent differences between gradients and
estimated gradients in the depth, albedo, and shading images. The pairwise
potential Es(D|I, A, S) for depth gradients is defined as

Es(D|I, A, S) =
∑

p
‖ODp − G(OIP ,OAP ,OSP ;wOD

G ) ◦ F(IP ;wOD
F )‖2, (4)

2 It is defined as the receptive field through the CNNs for pixel p [33].
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Fig. 2. Network architecture of the JCNF model. It consists of a depth prediction
network, an intrinsic prediction network, and a gradient scale network. These networks
are learned by minimizing a joint CRF loss function.

where ◦ denotes the Hadamard product, and the estimated depth gradients of
F(Ip;w

OD
F ) provide a guidance gradient field for depth, similar to a Poisson equa-

tion [34, 35]. They are weighted by a confidence factor G(OIP ,OAP ,OSP ;wOD
G )

learned in the gradient scale network to reduce the impact of erroneous gradi-
ents. This gradient scale is similar to the derivative-level confidence employed in
[36] for image restoration, except that our gradient scale is learned non-locally
with CNNs and different types of guidance images, as later described in Sec. 3.4.
The pairwise potentials for albedo gradients Es(A|I,D, S) and shading gradi-
ents Es(S|I,D,A) are defined in the same manner. Since the gradient scales are
jointly estimated with each other task, these pairwise potentials are computed
within an iterative solver, which will be described in Sec. 4.1.

3.3 Joint Depth and Intrinsic Prediction Network

Our joint depth and intrinsic prediction network utilizes the aforementioned en-
ergy function to predict D, OD, OA, and OS from a single image I. The joint
network consists of a depth prediction network for D and OD, and an intrinsic
prediction network for OA and OS. In contrast to previous methods for single-
image depth prediction [6, 37, 11], our system jointly estimates the gradient fields
OD, OA, and OS, which are used to reduce ambiguity in the solution and obtain
more edge-preserved results. To allow the different estimation tasks to leverage
information from one another, we design the depth and intrinsic networks to
share concatenated convolutional activations, and share convolutional layers be-
tween albedo and shading networks, as illustrated in Fig. 2.

Depth Prediction Network The depth prediction network consists of a global
depth network and a depth gradient network. For the global depth network, we
learn its parameters wD

F for predicting an overall depth map from the entire
image structure. Similar to [6, 37, 11], it provides coarse, spatially-varying depth
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that may be lacking in fine detail. This coarse depth will later be refined using
the output of the depth gradient network.

The global depth network consists of five convolutional layers, three pooling
layers, six non-linear activation layers, and two fully-connected (FC) layers. For
the first five layers, the pre-trained parameters from the AlexNet architecture
[38] are employed, and fine-tuning for the dataset is done. Rectified linear units
(ReLUs) are used for the non-linear layers, and the pooling layers employ max
pooling. The first FC layer encodes the network responses into fixed-dimensional
features, and the second FC layer infers a coarse global depth map at 1/16-scale
of the original depth map.

The depth gradient network predicts fine-detail depth gradients for each
pixel. Its parameters wOD

F are learned using an end-to-end patch-level scheme
inspired by [39, 35], where the network input is an image patch and the output
is a depth gradient patch. For inference of depth gradients at the pixel level, the
depth gradient network consists of five convolutional networks followed by Re-
LUs, without stride convolutions or pooling layers. The first convolutional layer
is identical to the first convolutional layer in the AlexNet architecture [38]. Four
additional convolutional layers are also used as shown in Fig. 2. The depth gradi-
ent patches that are output by this network will be used for depth reconstruction
in Sec. 4.2. Note that in the testing procedure, the depth gradient network is
applied to overlapping patches over the entire image, which are aggregated in
the last convolutional layer to yield the full gradient field.

Intrinsic Prediction Network The intrinsic prediction network has a struc-
ture similar to the depth gradient prediction network. The network parameters
wOA
F and wOS

F are learned for predicting the albedo and shading gradients at
each pixel. To jointly infer the depth and intrinsic image gradients, the second
convolutional activations for each task are concatenated and passed to their third
convolutional layers as shown in Fig. 2. In the training procedure, the depth and
intrinsic networks are iteratively learned, which enables each task to benefit from
each other’s activations to provide more reliable estimates. Furthermore, similar
to [11], the albedo and shading gradient networks share their first three convo-
lutional layers, while the last two are separate. Since the albedo and shading
images have related properties, these shared convolutional layers benefit their
estimation. Details on kernel sizes and the number of channels for each layer are
provided in the supplemental material for all the networks.

3.4 Gradient Scale Network

The estimated gradients from the depth and intrinsic prediction networks might
contain errors due to the ill-posed nature of their problems. To help in identifying
such errors, our system additionally learns the confidence of estimated gradients,
specifically, whether a gradient exists at a particular location or not. The basic
idea is to learn from the training data about the consistencies that exist among
the different types of gradients given their local neighborhood P. From this, we
can determine the confidence of a gradient (e.g., a depth gradient), based on
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the other estimated gradients (e.g., the albedo, shading, and image gradients).
This confidence is modeled as a gradient scale that is similar to the scale map
used in [36] to model derivative-level confidence for image restoration. It can be
noted that in some depth and intrinsic image decomposition methods [1, 4, 7], the
solutions are filtered with fixed parameters using the color image as guidance.
Our system instead learns a network for defining the parameters, using not only
a color image but also depth and intrinsic images as guidance.

The gradient scale network consists of three convolutional layers and one
non-linear activation layer. For the case of depth gradients, the output of the
gradient scale network G(OIP ,OAP ,OSP ;wOD

G ) is estimated as the convolution
between wOD

G and (|OIP |2, |OAP |2, |OSP |2), followed by a non-linear activation
i.e., f(·) = (1−exp(1−·))/(1+exp(1−·)), which is defined within [−1, 1]. Here,
|·|2 for a vector of gradients denotes a vector of the gradient magnitudes. Thus, in
the gradient scale network, the network parameters are convolved with the gra-
dient magnitudes. With the learned parameters wOD

G , the confidence of ODp is
estimated from OIP , OAP , OSP . This can alternatively be viewed as a guidance
filtering weight forD with guidance images I,A, and S. G(OIP ,ODP ,OSP ;wOA

G )
and G(OIP ,ODP ,OAP ;wOS

G ) are also similarly defined.
Some properties of gradient scales are as follows. A gradient scale can be

either positive or negative. A large positive value indicates high confidence in
the presence of a gradient. A large negative value also indicates high confidence,
but for the reversed gradient direction. In addition, when a gradient field contains
extra erroneous regions, gradient scales of value 0 can help to disregard them.

4 Unified Depth and Intrinsic Image Prediction

4.1 Training

The energy function E(D,A, S|I) from (1) is used to simultaneously learn the
depth and intrinsic network parameters (wD

F , wOD
F , wOA

F , wOS
F ) and the gradient

scale network parameters (wOD
G , wOA

G , wOS
G ). Although the overall form of the

energy is non-quadratic, it has a quadratic form with respect to each of its terms.
The energy function can thus be minimized by alternating among its terms.

Loss Functions For the global depth unary potential of (2), the global depth
network parameters wD

F can be solved by minimizing the following loss function

L(wD
F ) =

∑
{i,p}

(
Di
p −F(IiP ;wD

F )
)2
. (5)

We note that the intrinsic image unary term does not contain network pa-
rameters to be learned, so it is used only in the testing procedure.

The pairwise potentials each incorporate two networks, namely the gradient
prediction network and gradient scale network, so they are iteratively trained.
The loss function for the depth gradient pairwise potential of (4) is defined as

L(wOD
G ,wOD

F ) =
∑
{i,p}
‖ODi

p − G(OIiP ,OA
i
P ,OS

i
P ;wOD

G ) ◦ F(IiP ;wOD
F )‖2.

(6)
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The loss functions for the pairwise potentials of the albedo gradients L(wOA
G ,wOA

F )
and shading gradients L(wOS

G ,wOS
F ) are similarly defined.

These loss functions are minimized using stochastic gradient descent with the
standard back-propagation [40]. First, wD

F is estimated through ∂L(wD
F )/∂wD

F .
Then wOD

G and wOD
F are iteratively estimated through ∂L(wOD

G ,wOD
F )/∂wOD

G
and ∂L(wOD

G ,wOD
F )/∂wOD

F . In each iteration, the loss functions are differently
defined according to the other network outputs, where the network parameters
are initialized with the values obtained from the previous iteration. In this way,
the networks account for the improving outputs of the other networks.

4.2 Testing

Iterative Joint Prediction In the testing procedure, the outputs D, OD,
OA and OS for a given input image I are predicted by minimizing the energy
function E(D,A, S|I) from (1) with constraints from the estimates computed
using the learned network parameters and forward-propagation. Similar to the
training procedure, we minimize E(D,A, S|I) with an iterative scheme due to its
non-quadratic form, where E(D|I) and E(A,S|I) are minimized in alternation.

For the depth prediction, E(D|I) is defined as a data term for global depth
and a pairwise term for depth gradients:

E(D|I) =
∑

p

(
Dp −D∗p

)2
+ λD

∑
p
‖ODp − C(OD∗p) ◦ OD∗p‖2, (7)

where ∗ denotes network outputs, and C(OD∗p) is the gradient scale of OD∗p
derived from G(OI∗P ,OA

∗
P ,OS

∗
P ;wOD

G ). We note that since C(OD∗p) is computed
with OI∗P , OA∗P , and OS∗P , all of the predictions need to be iteratively estimated.

For the intrinsic prediction, E(A,S|I) is also defined as data and pairwise
terms, with the image formation equation and the albedo and shading gradients:

E(A,S|I) =
∑

p
(Lp(Ip −Ap − Sp))2

+
∑

p
λA‖OAp − C(OA∗p) ◦ OA∗p‖2 + λS‖OSp − C(OS∗p) ◦ OS∗p‖2,

(8)

where C(OA∗p) and C(OS∗p) are defined similarly to C(OD∗p). This energy func-
tion can be optimized with an existing linear solver [1]. These two energy func-
tions E(D|I) and E(A,S|I) are iteratively minimized while providing informa-
tion in the form of depth, albedo, and shading gradients to each other.

Coarse-to-Fine Joint Prediction In estimating depth and intrinsic images,
enforcing a degree of global consistency can lead to performance gains [1, 5]. For
greater global consistency, we apply our joint prediction model in a coarse-to-
fine manner, where color images I l are constructed at NL image pyramid levels
l = {1, ...,NL}, and the depth Dl and intrinsic images Al and Sl are predicted
from I l. Coarser scale results are then used as guidance for finer levels.

Specifically, we reformulate E(D|I) as E(Dl|I l, I l−1):

E(Dl|I l, I l−1) =
∑

p

(
Dl
p −Dl,∗

p

)2
+
∑

p

(
Dl
p −Dl−1

p

)2
+ λD

∑
p
‖ODl

p − C(ODl,∗
p ) ◦ ODl,∗

p ‖2.
(9)
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Similarly, E(A,S|I) is reformulated as E(Al, Sl|I l, I l−1):

E(Al, Sl|I l, I l−1) =
∑

p
(Llp(I

l
p −Alp − Slp))2 + (Alp −Al−1p )2 + (Slp − Sl−1p )2

+
∑

p
λA‖OAlp − C(OAl,∗p ) ◦ OAl,∗p ‖2 + λS‖OSlp − C(OSl,∗p ) ◦ OSl,∗p ‖2,

(10)

where the multi-scale unary functions lead to more reliable solutions and faster
convergence. The high-level algorithm for the training and testing procedures is
provided in the supplemental material.

5 Experimental Results

For our experiments, we implemented the JCNF model using the VLFeat Mat-
ConvNet toolbox [40]. The energy function weights were set to {λD, λA, λS} =
{1, 0.1, 0.1} by cross-validation. The filter weights of each network layer were
initialized by drawing randomly from a Gaussian distribution with zero mean
and a standard deviation of 0.001. The network learning rates were set to 10−4,
except for the final layer of the gradient networks where it was set to 10−5.

We additionally augmented the training data by applying random transforms
to it, including scalings in the range [0.8, 1.2], in-plane rotations in the range
[−15, 15], translations, RGB scalings, image flips, and different gammas.

In the following, we evaluated our system through comparisons to state-
of-the-art depth prediction and intrinsic image decomposition methods on the
MPI SINTEL [41], NYU v2 [42], and Make3D [43] benchmarks. We additionally
examined the performance contributions of the joint network learning (wo/jnl),
the gradient scale network (wo/gsn), and the coarse-to-fine scheme (wo/ctf).
The experimental details are provided in the supplemental material.

5.1 MPI SINTEL Benchmark

We evaluated our JCNF model on both depth prediction and intrinsic image de-
composition on the MPI SINTEL benchmark [41], which consists of 890 images
from 18 scenes with 50 frames each. For a fair evaluation, we followed the same
experimental protocol as in [1, 11], with their two-fold cross-validation and train-
ing/testing image splits. Fig. 3 and Fig. 4 exhibit predicted depth and intrinsic
images from a single image, respectively. Table 1 and Table 2 are quantitative
evaluations for both tasks using a variety of metrics, including average relative
difference (rel), average log10 error (log10), root-mean-squared error (rms), its log
version (rmslog), and accuracy with thresholds δ = {1.25, 1.252, 1.253} [7]. For
quantitatively evaluating intrinsic image decomposition performance, we used
mean-squared error (MSE), local mean-squared error (LMSE), and the dissimi-
larity version of the structural similarity index (DSSIM) [11].

For the depth prediction task, data-driven approaches (DT [16] and DA [17])
provided limited performance due to their low learning capacity. CNN-based
depth prediction (DCNF-FCSP [7]) using a pre-trained model from NYU v2



Unified Depth Prediction and Intrinsic Image Decomposition via JCNF 11

(a) (b) (c) (d) (e)

Fig. 3. Qualitative results on MPI SINTEL [41] for depth prediction. (a) color image,
(b) DA [17], (c) DCNF-FCSP(NYU) [7], (d) JCNF, and (e) ground truth.

(a) (b) (c) (d) (e)

Fig. 4. Qualitative results on MPI SINTEL [41] for intrinsic decomposition of Fig. 3.
(a) Shen et al. [30], (b) SIRFS [31], (c) MSCR [11], (d) JCNF, and (e) ground truth.

[42] showed better performance, but is restricted by depth ambiguity problems.
Our JCNF model achieved the best results both quantitatively and qualitatively,
whether pre-trained using MPI SINTEL or NYU v2 datasets. Furthermore, it
is shown that omitting the gradient scale network, coarse-to-fine processing, or
joint learning significantly reduced depth prediction performances.

In intrinsic image decomposition, existing single-image based methods [44,
23, 30, 22, 24] produced the lowest quality results as they do not benefit from
any additional information. RGB-D based methods [1, 5, 4] performed better
with measured depth as input. CNN-based intrinsic decomposition [11] surpassed
RGB-D based techniques even without having depth as an input, but its results
exhibit some blur, likely due to ambiguity from limited training datasets. Thanks
to its gradient domain learning and leverage of estimated depth information, our
JCNF model provides more accurate and edge-preserved results, with the best
qualitative and quantitative performance.

5.2 NYU v2 RGB-D Benchmark

For further evaluation, we obtained a set of RGB, depth, and intrinsic images
by applying RGB-D based intrinsic image decomposition methods [1, 4] on the
NYU v2 RGB-D database [42]. Of its 1449 RGB-D images of indoor scenes, we
used 795 for training and 654 for testing, which is the standard training/testing
split for the dataset.
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Methods
Error Accuracy

rel log10 rms rmslog δ < 1.25 δ < 1.252 δ < 1.253

Depth Transfer [16] 0.448 0.193 9.242 3.121 0.524 0.712 0.735
Depth Analogy [17] 0.432 0.167 8.421 2.741 0.621 0.799 0.812
DCNF-FCSP(NYU) [7] 0.424 0.164 8.112 2.421 0.652 0.782 0.824

JCNF(NYU) 0.293 0.131 7.421 1.812 0.715 0.812 0.831
JCNF wo/jnl 0.292 0.138 7.471 1.973 0.714 0.783 0.839
JCNF wo/gsn 0.271 0.119 7.451 1.921 0.724 0.793 0.893
JCNF wo/ctf 0.252 0.101 7.233 1.622 0.729 0.812 0.878
JCNF 0.183 0.097 6.118 1.037 0.823 0.834 0.902

Table 1. Quantitative results on MPI SINTEL [41] for depth prediction. DCNF-FCSP
(NYU) [7] and JCNF(NYU) predict the depth by pre-training on NYU v2 [42].

Methods
MSE LMSE DSSIM

albedo shading avg. albedo shading avg. albedo shading avg.

Retinex [44] 0.053 0.049 0.051 0.033 0.028 0.031 0.214 0.206 0.210
Li et al. [23] 0.042 0.041 0.037 0.024 0.031 0.034 0.242 0.224 0.194
Shen et al. [30] 0.043 0.039 0.048 0.028 0.027 0.032 0.221 0.210 0.232
Zhao et al. [22] 0.047 0.041 0.031 0.028 0.029 0.031 0.210 0.257 0.214
IIW [24] 0.041 0.032 0.041 0.032 0.031 0.027 0.281 0.241 0.284
SIRFS [31] 0.042 0.047 0.043 0.029 0.026 0.028 0.210 0.206 0.208

Jeon et al. [4] 0.042 0.033 0.032 0.021 0.021 0.023 0.204 0.181 0.193
Chen et al. [1] 0.031 0.028 0.029 0.019 0.019 0.019 0.196 0.165 0.181

MSCR [11] 0.020 0.017 0.021 0.016 0.011 0.011 0.201 0.150 0.176

JCNF wo/jnl 0.012 0.015 0.016 0.014 0.010 0.010 0.149 0.123 0.141
JCNF wo/gsn 0.008 0.011 0.011 0.010 0.009 0.008 0.146 0.112 0.132
JCNF wo/ctf 0.008 0.012 0.010 0.009 0.008 0.008 0.127 0.110 0.119
JCNF 0.007 0.009 0.007 0.006 0.007 0.007 0.092 0.101 0.097

Table 2. Quantitative results on MPI SINTEL [41] for intrinsic decomposition using
methods based on single images, RGB-D, CNNs, and our JCNF model.

For depth prediction, comparisons are made to the ground truth depth in
Fig. 5 and Table 2 using the same experimental settings as in [7]. The state-of-
the-art CNN-based methods [6, 7] clearly outperformed other previous methods.
The performance of our JCNF model was even higher, with pre-training on either
MPI SINTEL or NYU v2. Our depth prediction network is similar to [6], but it
additionally predicts depth gradients and leverages intrinsic image estimates to
elevate performance.

In intrinsic image decomposition of Fig. 6, RGB-D based methods [1, 4] are
used as ground truth for training. It is seen that our JCNF more closely resembles
that assumed ground truth than single-image based methods [23, 24].

5.3 Make3D RGB-D Benchmark

We also evaluated our JCNF model on the Make3D dataset [43], which contains
534 images depicting outdoor scenes (with 400 used for training and 134 for
testing). To account for a limitation of this dataset [12, 45, 7], we calculate depth
errors in two ways [45, 7]: on only regions with ground truth depth less than
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Methods
Error Accuracy

rel log10 rms rmslog δ < 1.25 δ < 1.252 δ < 1.253

Make3D [12] 0.349 - 1.214 0.409 0.447 0.745 0.897
Depth Transfer [16] 0.350 0.134 1.1 0.378 0.460 0.742 0.893
Depth Analogy [17] 0.328 0.132 1.31 0.392 0.471 0.799 0.891
MS-CNNs [6] 0.228 - 0.901 0.293 0.611 0.873 0.961
DCNF-FCSP [7] 0.221 0.095 0.760 0.281 0.604 0.885 0.974

JCNF(MPI) 0.214 0.093 0.716 0.241 0.677 0.879 0.927
JCNF wo/jnl 0.216 0.101 0.753 0.241 0.625 0.896 0.925
JCNF wo/gsn 0.210 0.091 0.728 0.254 0.621 0.890 0.975
JCNF wo/ctf 0.208 0.106 0.708 0.237 0.681 0.901 0.972
JCNF 0.201 0.077 0.711 0.212 0.690 0.910 0.979

Table 3. Quantitative results on the NYU v2 dataset [42] for depth prediction.

(a) (b) (c) (d) (e) (f)

Fig. 5. Qualitative results on NYU v2 [42] for depth prediction. (a) color image, (b)
MS-CNNs [6], (c) DCNF-FCSP [7], (d) JCNF(MPI), (e) JCNF, and (f) ground truth.

(a) (b) (c) (d) (e) (f)

Fig. 6. Qualitative results on NYU v2 [42] for intrinsic decomposition of Fig. 5. (a) Li
et al. [23], (b) IIW [24], (c) Jeon et al. [4], (d) JCNF learned using [4], (e) Chen et al.
[1], and (f) JCNF learned using [1].

70 meters (denoted by C1), and over the entire image (C2). From the depth
prediction results in Fig. 7 and Table 4, our JCNF model is found to yield the
highest accuracy, even when pretrained on MPI SINTEL [41] or NYU v2 [42]
(i.e., JCNF(MPI) and JCNF(NYU)). For the intrinsic image decomposition results
given in Fig. 8, JCNF also outperforms the comparison techniques.

6 Conclusion

We presented Joint Convolutional Neural Fields (JCNF) for jointly predicting
depth, albedo and shading maps from a single input image. Its high performance
can be attributed to its sharing network architecture, its gradient domain infer-
ence, and the incorporation of gradient scale network. It is shown through exten-
sive experimentation that synergistically solving for these physical scene prop-
erties through the JCNF leads to state-of-the-art results in both single-image
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Methods
Error (C1) Error (C2)

rel log10 rms rmslog rel log10 rms rmslog

Make3D [12] 0.412 0.165 11.1 0.451 0.407 0.155 16.1 0.486
Depth Transfer [16] 0.355 0.127 9.20 0.421 0.438 0.161 14.81 0.461
Depth Analogy [17] 0.371 0.121 8.11 0.381 0.410 0.144 14.52 0.479
DCNF-FCSP [7] 0.331 0.119 8.60 0.392 0.307 0.125 12.89 0.412

JCNF(MPI) 0.273 0.110 7.70 0.351 0.263 0.117 8.62 0.347
JCNF(NYU) 0.274 0.097 7.22 0.352 0.287 0.127 8.22 0.341
JCNF 0.262 0.092 6.61 0.321 0.243 0.091 6.34 0.302

Table 4. Quantitative results on the Make3D dataset [43] for depth prediction.

(a) (b) (c) (d) (e) (f) (g)

Fig. 7. Qualitative results on Make3D [42] for depth prediction. (a) color image, (b)
DA [17], (c) DCNF-FCSP [7], (d) JCNF(MPI), (e) JCNF(NYU), (f) JCNF, and (g)
ground truth.

(a) (b) (c) (d) (e) (f) (g)

Fig. 8. Qualitative results on Make3D [43] for intrinsic decomposition of Fig. 7. (a) Li
et al. [23], (b) Zhao et al. [22], (c) IIW [24], (d) Jeon et al. [4], (e) JCNF learned using
[4], (f) Chen et al. [1], and (g) JCNF learned using [1].

depth prediction and intrinsic image decomposition. In furture work, JCNF can
potentially benefit shape refinement and image relighting from a single image.
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