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Abstract—We present a descriptor, called fully convolutional self-similarity (FCSS), for dense semantic correspondence. Unlike
traditional dense correspondence approaches for estimating depth or optical flow, semantic correspondence estimation poses
additional challenges due to intra-class appearance and shape variations among different instances within the same object or scene
category. To robustly match points across semantically similar images, we formulate FCSS using local self-similarity (LSS), which is
inherently insensitive to intra-class appearance variations. LSS is incorporated through a proposed convolutional self-similarity (CSS)
layer, where the sampling patterns and the self-similarity measure are jointly learned in an end-to-end and multi-scale manner.
Furthermore, to address shape variations among different object instances, we propose a convolutional affine transformer (CAT) layer
that estimates explicit affine transformation fields at each pixel to transform the sampling patterns and corresponding receptive fields.
As training data for semantic correspondence is rather limited, we propose to leverage object candidate priors provided in most existing
datasets and also correspondence consistency between object pairs to enable weakly-supervised learning. Experiments demonstrate
that FCSS significantly outperforms conventional handcrafted descriptors and CNN-based descriptors on various benchmarks.

Index Terms—Dense semantic correspondence, convolutional neural networks, self-similarity, weakly-supervised learning
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1 INTRODUCTION

NUMEROUS computer vision and computational pho-
tography applications require the points on an object

in one image to be matched with their corresponding object
points in another image, such as a motorbike wheel matched
to a different model of motorbike’s wheel, as exemplified
in Fig. 1. Dealing with such appearance variations over
object instances is essential for numerous tasks such as scene
recognition, image registration, semantic segmentation, and
image editing [1], [2], [3], [4], [5]. Unlike traditional dense
correspondence approaches for estimating depth [6], [7] or
optical flow [8], [9], in which visually similar images of the
same scene are used as inputs, establishing dense correspon-
dences across semantically similar images poses additional
challenges due to intra-class appearance variations among
object instances.

Often, basic visual properties such as colors and gradi-
ents are not shared among different instances within the
same object or scene category. Moreover, geometric varia-
tions appear frequently among them. Those variations lead
to significant differences in appearance and shape that can
degrade matching by handcrafted feature descriptors [10],
[11]. Although powerful optimization techniques can help
by enforcing smoothness constraints over a correspondence
map [2], [3], [5], [12], [13], they are limited in effectiveness
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Fig. 1. Visualization of our FCSS results: (a) source image, (b) target
image, (c) warped source image using dense correspondences, (d),
(e) enlarged windows for source and target images, (f), (g) local self-
similarities computed by our FCSS descriptor between source and tar-
get images. Even though there are significant differences in appearance
among different instances within the same object category in (a) and
(b), their local self-similarities computed by our FCSS descriptor are
preserved as shown in (f) and (g), providing robustness to intra-class
appearance and shape variations.

without a proper feature descriptor for semantic correspon-
dence estimation.

Over the past few years, convolutional neural network
(CNN) based features have become increasingly popular
for correspondence estimation thanks to their matching
precision and their invariance to minor photometric and
geometric deformations [14], [15], [16], [17]. However, for
computing semantic correspondences within this frame-
work, greater invariance is needed to deal with the more
substantial appearance differences. This could potentially
be achieved with a deeper convolutional network [18], but
would come at the cost of significantly reduced spatial
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localization precision in matching (see [19], [20] for exam-
ples). Furthermore, moderate geometric variations among
different object instances cannot be overcome within this
framework without considering explicit geometric transfor-
mation fields. An additional challenge lies in the lack of
training data with ground truth for semantic correspon-
dence, making the use of supervised training difficult.

To address these issues, we introduce a novel CNN-
based descriptor that is inherently insensitive to both intra-
class appearance and shape variations while maintaining
precise spatial localization ability. The key insight, illus-
trated in Fig. 1, is that among different object instances
in the same class, their local structural layouts remain
roughly the same. Even with dissimilar colors, gradients,
and moderate differences in feature positions, the local self-
similarity (LSS) between sampled patch pairs is basically
preserved. This property has been utilized for non-rigid
object detection [21], sketch retrieval [22], and cross-modal
correspondence estimation [23], [24]. However, existing LSS-
based techniques are mainly handcrafted and need further
robustness to capture reliable matching evidence from se-
mantically similar images.

Our proposed descriptor, called fully convolutional self-
similarity (FCSS), formulates the LSS within a fully convo-
lutional network in a manner where the patch sampling
patterns and self-similarity measure are both learned. We
propose a convolutional self-similarity (CSS) layer that en-
codes the LSS structure and possesses differentiability, al-
lowing for end-to-end training of the proposed network.
The convolutional self-similarities are measured at mul-
tiple scales, using skip layers [19] to forward intermedi-
ate convolutional activations. To address geometric varia-
tions such as affine transformations among different object
instances, we propose a convolutional affine transformer
(CAT) layer that estimates explicit affine transformation
fields to transform the sampling patterns and corresponding
receptive fields. Furthermore, since limited training data
is available for semantic correspondence, we propose a
weakly-supervised feature learning scheme that leverages
correspondence consistency within object candidate priors
provided in existing datasets. With this learning scheme,
we examine two kinds of loss functions for training the
proposed network: a correspondence contrastive loss which
aims to minimize/maximize convolutional activation dif-
ferences between matching/non-matching pixel pairs, and
a correspondence classification loss which treats correspon-
dence as a classification problem among candidate pixels.

Experimental results show that the FCSS descriptor out-
performs conventional handcrafted descriptors and CNN-
based descriptors on various benchmarks, including that
of Taniai et al. [12], Proposal Flow-WILLOW [13], Proposal
Flow-PASCAL [25], and the CUB-200-2011 dataset [26], and
on different applications, including non-parametric part
segmentation on the PASCAL-VOC part dataset [27], fore-
ground mask detection on Caltech-101 [28], non-parametric
object segmentation on PASCAL-VOC 2012 [29], and non-
parametric object detection on Proposal Flow-PASCAL [25].

This manuscript extends the conference version of this
work [30]. It newly adds (1) an affine invariant extension of
the FCSS, called CAT-FCSS; (2) an examination of two kinds
of loss functions for training the proposed network; and

(3) an extensive comparative study with existing semantic
correspondence methods using various datasets. The source
code of our work is available online at our project webpage:
http://diml.yonsei.ac.kr/∼srkim/FCSS/.

2 RELATED WORK

2.1 Feature Descriptors

Conventional gradient-based and intensity comparison-
based descriptors, such as SIFT [10], HOG [31], DAISY [11],
and BRIEF [32], have shown limited performance in dense
correspondence estimation across semantically similar but
different object instances. Besides these handcrafted fea-
tures, several attempts have recently been made using deep
CNNs to learn discriminative descriptors for local patches
from large-scale datasets. Some of these techniques have
extracted intermediate convolutional activations as the de-
scriptor [33], [34], [35], [36], which have shown to be effec-
tive for patch-level matching. Other methods have directly
learned similarity measures for comparing patches using a
convolutional similarity network [14], [15], [16], [17]. Even
though these CNN-based descriptors encode a discrimina-
tive structure with a deep architecture, they have inherent
limitations in handling large intra-class variations [16], [37].
Furthermore, some of those methods are tailored to estimate
sparse correspondences [14], [17], and cannot in practice
provide dense descriptors due to their high computational
complexity. Of particular importance, current research on
semantic correspondence lacks an appropriate benchmark
with dense ground-truth correspondences, making super-
vised learning of CNNs less feasible for this task.

Use of the LSS descriptor, proposed in [21], has led to
impressive results in object detection, image retrieval by
sketching [21], deformable shape class retrieval [22], and
cross-modal correspondence estimation [23], [24]. Among
the more recent cross-modal descriptors inspired by LSS is
the dense adaptive self-correlation (DASC) descriptor [23],
which provides relatively good performance but is unable to
handle non-rigid deformations due to its fixed patch pool-
ing scheme. The deep self-correlation (DSC) descriptor [24]
reformulates LSS in a deep non-CNN architecture. As all of
these techniques use handcrafted descriptors, they lack the
robustness to deformations that is possible with CNNs.

2.2 Dense Semantic Correspondence

Conventionally, many techniques for dense semantic cor-
respondence have employed handcrafted features such as
SIFT [10] or HOG [31]. To improve matching quality, they fo-
cus on optimization. Graph-based matching algorithms [38],
[39] attempt to find category-level feature matches by lever-
aging a flexible graph representation of images, but they are
designed to handle sparsely sampled or detected features.
Among these methods are some based on SIFT Flow [2],
[3], which uses hierarchical dual-layer belief propagation
(BP). Inspired by this, Kim et al. [3] proposed the deformable
spatial pyramid (DSP) which performs multi-scale regular-
ization with a hierarchical graph. Other instances include
methods that perform matching with an exemplar-LDA
approach [40], through joint image set alignment [5], or
together with cosegmentation [12].
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More recently, CNN-based descriptors have been used
for establishing dense semantic correspondences. Pretrained
ConvNet features [41] were employed with the SIFT Flow
algorithm [36] and with semantic flow using object propos-
als [13]. Zhou et al. [42] proposed a deep network consisting
of a feature encoder and a flow decoder to predict cross-
instance correspondences, which exploits cycle-consistency
with a 3-D CAD model [43] as a supervisory signal. How-
ever, the need to have 3-D CAD model for each object class
limits its applicability. Furthermore, none of those methods
are able to handle non-rigid geometric variations. Choy et
al. [44] proposed a deep convolutional descriptor based on
fully convolutional feature learning. As those methods for-
mulate the networks only by combining successive convo-
lutions, they face a tradeoff between appearance invariance
and localization precision, which limits their effectiveness
for semantic correspondence.

Several methods aim to alleviate geometric variations
through extensions of SIFT Flow, including scale-less SIFT
Flow (SLS) [45], scale-space SIFT Flow (SSF) [46], and gen-
eralized DSP (GDSP) [47]. However, they have a critical and
practical limitation that their computation linearly increases
with the search space size. Tau et al. [48] proposed a dense
correspondence algorithm that propagates scales estimated
from sparse interest points and uses them to optimize cor-
respondence fields. However, limited performance has been
achieved due to propagation of erroneous scales. A gener-
alized PatchMatch algorithm [49] was proposed for efficient
matching that leverages a randomized search scheme. It was
utilized by HaCohen et al. [1] in a non-rigid dense corre-
spondence (NRDC) algorithm, but employs weak match-
ing evidence that cannot guarantee reliable performance.
Geometric invariance to scale and rotation is provided by
Daisy Filter Flow (DFF) [4], but its implicit smoothing model
which relies on randomized sampling and propagation of
good estimates in the direct neighborhood often induces
mismatches. While those aforementioned techniques pro-
vide some amount of geometric invariance, none of them
can deal with affine transformations across images, which
are a frequent occurrence in semantic correspondence. More
recently, Kim et al. [50] proposed a discrete-continuous
transformation matching (DCTM) framework where dense
affine transformation fields are inferred using a handcrafted
energy function and optimization.

2.3 Transformation Invariance in CNNs

Most CNN-based approaches tolerate just minor geomet-
ric variations by simply employing spatial pooling layers
or data augmentation techniques [18]. Recently, Laptev et
al. [51] proposed a transformation-invariant pooling opera-
tor (TI-pooling), but it only considers a set of pre-defined
geometric transformations. Spatial transformer networks
(STNs) [52] offer a way to deal with geometric variations
within CNNs by warping feature maps through a global
parametric transformation. More recently, Lin et al. [53] pro-
posed inverse compositional spatial transformer networks
(IC-STNs) that replaces the feature warping with trans-
formation parameter propagation. However, these meth-
ods consider a global image transformation only, and thus
they cannot provide tolerance to spatially-varying geometric

Patch pairs in source image

Patch pairs in target image

Source image Target image

Local self-similarities (LSS)

Fig. 2. Visuallization of LSS descriptor. This descriptor represents local
self-similarity between certain patch pairs within a local support window.

variations, which frequently appear in dense semantic cor-
respondence. To overcome these limitations, Choy et al. [44]
developed a descriptor, called universal correspondence
network (UCN), based on convolutional STNs that enables
spatially-varying feature manipulation. Dai et al. [54] intro-
duced deformable convolutional networks (DCN) to encode
spatially-varying geometric variations in CNNs.

3 THE FCSS DESCRIPTOR

3.1 Problem Formulation and Overview
Given an image I and image point Ii for pixel i = [ix, iy]T , a
dense descriptor Di is designed to extract a robust represen-
tation on a local support window. For LSS, this descriptor
represents locally self-similar structures around a given
pixel by recording the similarity between certain patch pairs
within a local support window, as shown in Fig. 2. Formally,
LSS can be described as a vector of feature values such that
Di = {Di(l)} for l = {1, ..., L}with the number of sampling
patterns L, where the feature values Di(l) are computed as

Di(l) = maxj∈Ni(l) exp(−S(j; sl, tl)/λ). (1)

S(i; sl, tl) is a self-similarity distance between two patches
Pi−sl and Pi−tl sampled on sl and tl, the lth selected
sampling pattern, around center pixel i. To alleviate the
effects of outliers, the self-similarity responses are encoded
by non-linear mapping with an exponential function of
bandwidth λ [55]. For spatial invariance to the position of
the sampling pattern, the maximum self-similarity within
a spatial window Ni(l) is computed. Based on this frame-
work, LSS has been formulated in various ways, using
different self-similarity distances and different sampling
strategies for the patch pairs [21], [23], [24].

By leveraging CNNs, our objective is to design a dense
descriptor that formulates LSS in a fully convolutional and
end-to-end manner for robust estimation of dense seman-
tic correspondences. We design the dense descriptor by
first considering translational transformations (Section 3.2,
Section 3.3). Our network is built as a multi-scale series
of convolutional self-similarity (CSS) layers where each
includes a two-stream shifting transformer for applying a
learned sampling pattern. This is then extended to provide
invariance to geometric distortions such as affine trans-
formations (Section 3.4). Specifically, convolutional affine
transformer (CAT) layers are proposed, which transform the
sampling patterns and corresponding receptive fields. To
learn the network in a weakly-supervised manner, we utilize
correspondence consistency between pairs of input images
within object bounding boxes provided in most existing
datasets [26], [27], [28], [29] (Section 3.5).
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(a) Straightforward implementation of CSS layers
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(b) Efficient implementation of CSS layers
Fig. 3. Convolutional self-similarity (CSS) layers, which measure convo-
lutional self-similarity S(i;Ws,Wt) between two patches Pi−Ws and
Pi−Wt . (a) Straightforward version. (b) Efficient version, which equiv-
alently solves for convolutional self-similarity while avoiding repeated
computations for convolutions.

3.2 CSS: Convolutional Self-Similarity Layer
Previous LSS-based techniques [21], [23], [24] evaluate
Eq. (1) by sampling patch pairs and then computing their
similarity using handcrafted metrics, which often fails to
yield effective matching evidence for estimating semantic
correspondences. To overcome this limitation, we propose
the convolutional self-similarity (CSS) layer that learns the
sampling patterns and computes the similarity of sampled
patch pairs through CNNs.

3.2.1 Two-Stream Shifting Transformer
With l omitted for simplicity, convolutional self-similarity
between a patch pair Pi−s and Pi−t is formulated through a
Siamese network, followed by a simple Euclidean distance
as shown in Fig. 3(a). The sampling patterns (s, t) of patch
pairs are a critical element of local self-similarity. In our
CSS layer, a sampling pattern for a pixel i can be generated
by shifting the image Ii by s and t to form two different
images from which self-similarity is measured. To learn
this spatial manipulation of data within the network, we
formulate a novel learnable module, called a two-stream
shifting transformer layer, in which the shift transformations
with s and t are defined as network parameters that can be
learned. In this way, the optimized sampling patterns can be
learned in the CNN.

Concretely, the sampling patterns are defined as network
parameters Ws = [Wsx ,Wsy ]T and Wt = [Wtx ,Wty ]T

for all (s, t). Since the shifted sampling is repeated in the
image domain, the image Ii is shifted without interpolation
according to the fixed sampling patterns as

Ii−Ws = F(Ii;Ws), Ii−Wt = F(Ii;Wt). (2)

3.2.2 Convolutional Similarity Network
To compute the convolutional self-similarity, we extract
convolutional activations from Ii−Ws

and Ii−Wt
through

feed-forward processes F(Ii−Ws
;Wc) and F(Ii−Wt

;Wc)

CSS Layers

CSS Layers

CSS 
Layers

Image Convolutional Activations FCSS Descriptor

Conv. Conv. Conv. Up.
/Nonlin.

/Max-Pool.

Up. / Nonlin./Max-Pool.Sk
ip

Sk
ip

……

Up. / Nonlin./Max-Pool.

CAT 
Layer

Fig. 4. Network configuration of the FCSS descriptor, consisting of
convolutional self-similarity layers at multiple scales.

with similarity network parameters Wc and measure self-
similarity based on the Euclidean distance, such that

S(i;Ws,Wt) = ‖F(Ii−Ws
;Wc)−F(Ii−Wt

;Wc)‖2. (3)

Note that a convolutional self-similarity S(i;Ws,Wt) is a
vector defined for all (Ws,Wt).

Our approach employs the Siamese network to measure
self-similarity within a single image, in contrast to recent
CNN-based descriptors [16], [17] that directly measure the
similarity between patches from two different images.

3.2.3 Efficient Computation
Computing S(i;Ws,Wt) for all (Ws,Wt) in this network
is time-consuming, since the number of iterations through
the similarity network is linearly proportional to the num-
ber of sampling patterns. To expedite this computation,
we instead generate the convolutional activations of an
entire image I by passing it through the CNN such that
A = F(I;Wc), similar to [56], and then measure the self-
similarity for the sampling patterns directly on the con-
volutional activations, as shown in Fig. 3(b). Formally, we
first define the sampled activations through a two-stream
shifting transformer

Ai−Ws = F(Ai;Ws), Ai−Wt = F(Ai;Wt). (4)

From this, convolutional self-similarity is then defined as

S(i;Ws,Wt) = ‖Ai−Ws −Ai−Wt‖2. (5)

With this scheme, the self-similarity can be measured by
running the similarity network only once, regardless of the
number of sampling patterns. Interestingly, a similar com-
putational scheme was also used to reduce computational
redundancy when locally extracting convolutional features
as in [56], [57], [58].

For end-to-end learning of the proposed descriptor, the
derivatives for the CSS layer must be computable, so that
the gradients of the final loss can be back-propagated to the
convolutional similarity and shifting transformer layers. The
differentiability of convolutional self-similarity is derived in
the supplementary materials.

3.3 Network Configuration for Dense Descriptor
3.3.1 Multi-Scale Convolutional Self-Similarity Layers
In building the descriptor through a CNN architecture, there
is a trade-off between robustness to semantic variations and
fine-grained localization precision [19], [20].

Inspired by the skip layer scheme in [19], we formulate
the CSS layers in a multi-scale manner to encode multi-scale
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(a) (b) (c)

(d) (e) (f) (g)
Fig. 5. Visualization of our CAT-FCSS results: (a) source image, (b)
target image, (c) warped source image using dense correspondences,
(d), (e) enlarged windows for source and target images, (f), (g) local
self-similarities computed by our CAT-FCSS descriptor between source
and target images. Our CAT-FCSS descriptor provides robustness to
geometric variations such as affine transformations.

self-similarities as shown in Fig. 4. Even though the CSS
layer itself provides robustness to semantic variations and
fine-grained localization precision, this scheme enables the
descriptor to boost both robustness and localization preci-
sion. Specifically, the CSS layers are located after multi-scale
intermediate activations, and their outputs are concatenated
to construct the proposed descriptor. In this way, the de-
scriptor naturally encodes self-similarity at multiple scales
of receptive fields, and further learns optimized sampling
patterns on each scale. It should be noted that many existing
descriptors [15], [20] also employ a multi-scale description
to improve matching quality.

For intermediate activations Ak = F(Ak−1;Wk
c ), where

k ∈ {1, ...,K} is the level of convolutional activations and
Wk

c represents convolutional similarity network parameters
at the kth level, the self-similarity at the the kth level is
measured according to sampling patterns Wk

s and Wk
t as

Sk(i;Wk
s ,W

k
t ) = ‖Ak

i−Wk
s
−Ak

i−Wk
t
‖2. (6)

Since the intermediate activations are of smaller spatial
resolution than the original image resolution due to the
stride and/or max-pooling operation, we apply a bilinear
upsampling layer [19] after each CSS layer.

3.3.2 Non-linear Mapping and Max-Pooling Layer
Since the pre-learned sampling patterns used in the CSS
layers are fixed over an entire image, they may be sensitive
to non-rigid deformation as described in [24]. To address
this, we perform the max-pooling operation within a spatial
window centered at a pixel i after the non-linear mapping:

Dk
i (l) = maxj∈Nki (l) exp(−Sk(j;Wk

s,l,W
k
t,l)/W

k
λ), (7)

where Wk
λ is a learnable Gaussian kernel parameter for

scale k. Note that this non-linear mapping is different from
rectified linear units (ReLUs) [59] commonly used after each
convolution in that it is designed to reduce the effects of
outliers when computing self-similarity as in [21], [23], [24].
The max-pooling layer provides an effect similar to using
pixel-varying sampling patterns, providing robustness to
minor non-rigid deformations. The descriptor for each pixel
then undergoes L2 normalization. Finally, the proposed
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Fig. 6. For affine invariance in FCSS descriptor, a convolutional affine
transformer (CAT) layer estimates an affine transformation field T(θi) to
transform the sampling patterns and corresponding receptive fields.

descriptor Di = {Dk
i (l)} for all k and l is built by concate-

nating the feature responses across all scales. Fig. 4 displays
an overview of FCSS descriptor construction.

3.4 Affine-Invariant Dense Descriptor

It is known that CNN-based descriptors provide geometric
invariance to some extent thanks to spatial pooling lay-
ers [16], [44]. However, it is rather limited and does not
obviate the need for explicit consideration of geometric
variations. Even our descriptor as described to this point
cannot deal with geometric variations due to the lack of a
mechanism for explicitly considering geometric transforma-
tion fields.

To overcome this issue, we adopt the idea of the spatial
transformer layer [52], [53] to explicitly estimate geometric
variation fields in the CNN architecture. However, instead
of estimating a global image transformation as in [52], [53],
we allow each pixel to undergo an independent transfor-
mation to deal with locally-varying geometric variations.
Specifically, spatially-varying affine transformation fields
are first extracted through an additional layer, called the
convolutional affine transformer (CAT). With the estimated
transformation fields, we then transform the sampling pat-
terns and corresponding receptive fields for measuring self-
similarities in the similarity network, as illustrated in Fig. 5.
Note that while some methods such as UCN [44] and
DCN [54] also transform receptive fields in a similar manner,
we extend them to transform the sampling patterns as well
as receptive fields tailored to the FCSS descriptor.

3.4.1 CAT: Convolutional Affine Transformer

The CAT layer first infers the affine transformation fields
through successive convolutions such that θi = F(Ii;Wa)
with affine inference network parameters Wa of the CAT
layer, and then uses them to transform the sampling pat-
terns and receptive fields, as shown in Fig. 6.

With an affine transformation field θi, sampling patterns
Ws are transformed into affine-varying sampling patterns
Wθ

i,s = [W θ
i,sx

,W θ
i,sy

]T as follows:[
W θ
i,sx

W θ
i,sy

]
= T(θi)

[
Wsx
Wsy

]
=

[
θ11
i θ12

i

θ21
i θ22

i

] [
Wsx

Wsy

]
,

(8)

where T(θi) is a matrix form of θi = [θ11
i , θ

12
i , θ

21
i , θ

22
i ]T .

Similarly, Wθ
i,t can be computed from Wt. Compared to

sampling patterns Ws and Wt, affine-varying sampling
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Fig. 7. Visualization of applying an affine-varying receptive field with pa-
rameterized sampling grids jθ according to affine transformation T(θi).

patterns Wθ
i,s and Wθ

i,t are spatially-varying on each pixel
i according to its corresponding affine field T(θi).

For full affine invariance, the receptive fields for mea-
suring self-similarity need to be transformed as well. This
warping process can be implemented through image sam-
pling on a parameterized grid, similar to spatial transformer
layers [52]. However, a spatially-varying parameterized
sampling grid cannot be directly realized with the existing
spatial transform layer [52]. To address this issue, we first
define a spatially-varying parameterized sampling grid in-
dependently for each sample within a receptive field and
then apply them sequentially for image sampling. Specifi-
cally, for a desired output grid sample u = [ux, uy]T within
an affine-varying local receptive field, the input grid sample
jθ = [jθx, j

θ
y]T is defined as transforming j with an affine

transformation field T(θi):[
jθx
jθy

]
=

[
θ11
i θ12

i

θ21
i θ22

i

] [
ux
uy

]
(9)

for all pixels i and all samples u within receptive fields on
the regular grid. For each input grid sample jθ , receptive
fields for the convolutional similarity layer are warped
through the bilinear sampler [52] independently such that

Iθj =
∑

i
Iimax(0, 1− |jθx − ix|)max(0, 1− |jθy − iy|).

(10)
This affine-varying local receptive field can be represented
in a vector form {Iθj } for all samples u, as shown in Fig. 7.
With this, affine-varying convolutional activations are com-
puted such that Aθ

i = F({Iθj };Wc). Note that since the
length of vector {Iθj } is z × |Pi| for a vector Ii of length z
and the number of samples within Pi is |Pi|, the convolu-
tional parameters for the first convolutional layers with size
h × w × z should be resized to 1 × 1 × hwz. Then, affine-
varying convolutional self-similarity is defined such that

Sθ(i;Wθ
i,s,W

θ
i,t) = ‖Aθ

i−Wθ
i,s
−Aθ

i−Wθ
i,t
‖2. (11)

For reliable estimates of affine transformation fields θi,
the network parameters Wa must be effectively learned. In
our approach, affine transformation fields T(θi) are used
to transform both the sampling patterns and the inputs of
the similarity network, so Wa is trained from both the CSS
layer and similarity network. The differentiability of con-
volutional self-similarity is derived in the supplementary
materials.

3.4.2 Multi-Scale Convolutional Affine Transformer Layers
Since the CSS layers in our descriptor are formulated in a
multi-scale manner to encode multi-scale self-similarities,
the CAT layers are also built in a multi-scale manner, provid-
ing multi-scale geometric invariance. Since optimal affine

transformation fields may differ among scales, the CAT
layers, θki = F(Ak−1

i ;Wk
a) with network parameters Wk

a

at the kth scale level, are placed before each convolutional
activation and the CSS layers. This finally yields a fully
affine-invariant FCSS descriptor, which we refer to as CAT-
FCSS. Fig. 8 displays an overview of CAT-FCSS descriptor
construction.

3.5 Weakly-Supervised Feature Learning

A major challenge of semantic correspondence estimation
with CNNs is the lack of ground-truth correspondence maps
for training data. To deal with this problem, we propose
a weakly-supervised feature learning scheme that obtains
putative training samples during training based on corre-
spondence consistency between image pairs. Unlike existing
CNN-based descriptor learning methods which use a set of
patch pairs [14], [15], [16] for training, we use a set of image
pairs. Such an image-wise learning scheme also expedites
feature learning by reducing the computational redundancy
that occurs when computing convolutional activations for
two adjacent pixels in the image. Our approach is con-
ceptually similar to [44], but we learn the descriptor in a
weakly-supervised manner that leverages correspondence
consistency between image pairs.

3.5.1 Correspondence Consistency

Intuitively, the correspondence relation from a source image
to a target image should be consistent with that from the
target image to the source image. After forward-propagation
with the training image pairs F(I;W) and F(I ′;W), the
best match i∗ for each pixel i is computed by comparing
descriptors from the two images through nearest neighbor
(NN) search [60]:

i∗ = argmini′ ‖F(Ii;W)−F(I ′i′ ;W)‖2, (12)

where W = {Wk
c ,W

k
a,W

k
s ,W

k
t ,W

k
λ | k = 1, ...,K}

represents all network parameters. After running NN twice
for the source and target images respectively, we identify the
pixel pairs that correspond to each other as putative positive
samples. With these putative positive samples, network
parameters are learned with loss functions defined in the
image domain, as described in the following section. These
putative samples are updated at each iteration during train-
ing. The feature learning begins by initializing the shifting
transform with randomly selected sampling patterns. We
found that even initial descriptors generated from random
patterns provide enough putative samples to be used for
weakly-supervised feature learning, which will be described
in detail in the experiments section. A similar observation
was also reported in [23].

To boost the computation and convergence of this feature
learning, we limit the correspondence candidate regions
according to object location priors such as a bounding box
or a mask containing the target object to be matched, which
are provided in most benchmarks [27], [28], [29]. Similar
to [5], [13], [42], it is assumed that true matches exist only
within the object region. Utilizing this prior mitigates the
side effects that may occur due to background clutter when
directly running the NN search, and also expedites the
feature learning process.
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Fig. 8. Network configuration of the CAT-FCSS descriptor, consisting of convolutional affine transformation layers and convolutional self-similarity
layers at multiple scales.

3.5.2 Correspondence Contrastive Loss

Since our method adopts image domain learning, the loss
function is also defined in the image domain. For train-
ing the network with image pairs with putative positive
samples, the correspondence contrastive loss can be used
similarly to [16], [17], [44] such that

Lco(W) =
1

2N

∑
i∈Ωco

li‖F(Ii;W)−F(I ′i′ ;W)‖2

+ (1− li)max(0, C − ‖F(Ii;W)−F(I ′i′ ;W)‖2),
(13)

where i and i′ are either a matching or non-matching pixel
pair, and li denotes a class label that is 1 for a positive pair
and 0 otherwise. Ωco represents the set of training samples,
and N is the number of training samples. C is the maximal
cost. It should be noted that in many supervised feature
learning methods [16], [17], [44], the class label li is given
from ground truth correspondence maps. Contrarily, in our
approach the class label li is actively determined via the
correspondence consistency. Among a set of correspondence
candidates computed from NN search, the pixel pairs with
consistent matches are used as positive samples (i.e., li =
1), and they are taken as negative samples otherwise (i.e.,
li = 0). We randomly select the training samples among
the positive and negative samples at each iteration during
training. Since the negative samples ensue from erroneous
local minima in the energy cost, they provide the effects of
hard negative mining during training [16].

Although this contrastive loss function yields satisfac-
tory performance [16], [17], [44], it has two inherent lim-
itations. First, obtaining proper negative samples is often
problematic, which is essential for learning a network well
[16], [17], [44]. Second, it is difficult to consider all possible
matching candidates for each pixel, often leading to solu-
tions trapped in erroneous local minima [44].

3.5.3 Correspondence Classification Loss

The correspondence estimation task is generally formulated
as a pixel-labeling problem. Thus, to establish reliable corre-
spondences, a descriptor should have high discriminability
to distinguish the true correspondence from other candi-
dates. To this end, we propose a correspondence classi-
fication loss that computes a softmax loss for each pixel
across all possible correspondence candidates. Specifically,
for each pixel i and its possible match candidates, the
correspondence classification loss is defined as

Lcl(W) = − 1

2N

∑
i∈Ωcl

∑
i′

pT (I ′i′) log(p(I ′i′ ; Ii,W)), (14)

where i′ is an index over all possible matching candidates.
pT (I ′i′) is a class label defined as 1 if i′ = i∗, and 0 otherwise.
Ωcl represents the set of training samples. The function
p(I ′i′ ; Ii,W) is a softmax probability defined as

p(I ′i′ ; Ii,W) =
exp(1− ‖F(Ii;W)−F(I ′i′ ;W)‖2)∑
l exp(1− ‖F(Ii;W)−F(I ′l ;W)‖2)

,

(15)
where l is an index over all possible matching candidates.

In contrast to the contrastive loss Lco, the classification
loss Lcl can consider all matching candidates through ag-
gregating all of their derivatives, thus providing boosted
learning performance. Furthermore, it does not need to
define hard negative samples. However, since the classifica-
tion loss Lcl needs the aggregation of all derivatives across
possible candidates, its computational time at each iteration
during training is larger than that of the contrastive loss Lco.
Nevertheless, the descriptor learned with the classification
loss Lcl can provide highly boosted matching accuracy.

4 EXPERIMENTAL RESULTS AND DISCUSSION

4.1 Experimental Settings

For our experiments, we implemented the FCSS and
CAT-FCSS descriptor using the VLFeat MatConvNet
toolbox [61] on an Intel Core i7-3770 CPU with an NVIDIA
GeForce GTX TITAN X GPU. For convolutional similarity
networks, we used the ImageNet pretrained VGG-Net [18]
from the bottom conv1 to the conv3-4 layer, with their
network parameters as initial values. CSS layers are located
after conv2-2, conv3-2, and conv3-4, thus K = 3. For the
CAT-FCSS descriptor, CAT layers are located after conv2-
1, conv3-1, and conv3-3, followed by three CSS layers.
Considering the tradeoff between efficiency and robustness,
the number of sampling patterns is set to 64, thus the total
dimension of the descriptor is L = 192. Before each CSS
layer, convolutional activations undergo L2 normalization
to reduce the effect of outliers [62]. To learn the network,
we employed the Caltech-101 dataset [28] excluding testing
image pairs used in the experiments. The number of training
samples N is 1024. C is set to 0.2. The learned parameters
were used for all the experiments.

In the following, we comprehensively evaluated our de-
scriptor through comparisons to state-of-the-art handcrafted
descriptors, including SIFT [10], DAISY [11], HOG [31], LSS
[21], and DASC [23], as well as recent CNN-based fea-
ture descriptors, including MatchNet (MatchN.) [14], Deep
Compare (DeepC.) [15], Deep Descriptor (DeepD.) [16],
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(a) (b) (c) (d) (e) (f) (g) (h)
Fig. 10. Qualitative results for various feature descriptors with fixed SF optimization on the Taniai benchmark [12]: (a) source image, (b) target
image, (c) SIFT [10], (d) DASC [23], (e) DeepD. [16], (f) MatchN. [14], (g) FCSS, and (h) CAT-FCSS w/Lcl.

(a) (b) (c) (d) (e) (f) (g) (h)
Fig. 11. Qualitative results for various feature descriptors with fixed NN optimization on the Taniai benchmark [12]: (a) source image, (b) target
image, (c) source key-points within object regions, (d) LSS [21], (e) LIFT [17], (f) DeepC. [15], (g) VGG [18], and (h) FCSS. For the visualization,
color-coded source key-points were warped to the target images using correspondences.

UCN [44], learned invariant feature transform (LIFT) [17]1,
and Zhou et al. [42]. Note that while all of these CNN-
based feature descriptors were learned in a fully super-
vised manner, our FCSS and CAT-FCSS were learned in a
weakly-supervised manner. Furthermore, geometry-robust
methods including SLS [45], SSF [46], SegSIFT [63], Lin
et al. [64], DFF [4], GDSP [47], Proposal Flow (PF) [13],
and WarpNet [65] were evaluated. The performance was
measured on the Taniai et al. benchmark [12], Proposal Flow-
WILLOW dataset [13], Proposal Flow-PASCAL dataset [25],
CUB-200-2011 dataset [26], PASCAL-VOC part dataset [27],
and Caltech-101 benchmark [28]. For ablation experiments
to validate the components of the FCSS descriptor, we
evaluated the initial VGG-Net (conv3-4) [18] (VGG), the
VGG-Net with learned single-scale CSS layer (VGG w/S-
CSS) and learned multi-scale CSS layers (VGG w/M-CSS)2.
Furthermore, we evaluated the CAT-FCSS descriptor in
comparison to the FCSS descriptor, and the performance
gain of the proposed descriptor with the correspondence
classification loss (FCSS w/Lcl, CAT-FCSS w/Lcl) in place
of the correspondence contrastive loss. As an optimizer
for estimating dense correspondence maps, we used the
hierarchical dual-layer belief propagation (BP) of the SIFT
Flow (SF) optimization [2], whose code is publicly available.
The performance of our descriptor when combined with
other powerful optimizers was also examined using PF [13].
Furthermore, to evaluate the performance of the descriptor
itself, we used simple nearest neighbor (NN) optimization3.

1. Since MatchN. [14], DeepC. [15], DeepD. [16], UCN [44], and
LIFT [17] were developed for sparse correspondence, sparse descriptors
were first built by forward-propagating images through networks and
then were upsampled.

2. In ‘VGG w/S-CSS’ and ‘VGG w/M-CSS’, the sampling patterns
were only learned with VGG-Net layers fixed.

3. Due to complexity issues, we uniformly sampled points on the
foreground with a stride of 8 as keypoints for matching, similar to [65].

TABLE 1
Matching accuracy for various feature descriptors with fixed SF

optimization on the Taniai benchmark [12]. VGG w/S-CSS† denotes
results with randomly selected sampling patterns.

Methods FD3D. JODS PASC. Avg.
SIFT [2] 0.632 0.509 0.360 0.500
DAISY [11] 0.636 0.373 0.338 0.449
LSS [21] 0.644 0.349 0.359 0.451
DASC [23] 0.668 0.454 0.261 0.461
DeepD. [16] 0.684 0.315 0.278 0.426
DeepC. [15] 0.753 0.405 0.335 0.498
MatchN. [14] 0.561 0.380 0.270 0.404
LIFT [17] 0.730 0.318 0.306 0.451
UCN [44] 0.741 0.321 0.311 0.458
VGG [18] 0.756 0.490 0.360 0.535
VGG w/S-CSS† 0.762 0.521 0.371 0.551
VGG w/S-CSS 0.775 0.552 0.391 0.573
VGG w/M-CSS 0.806 0.573 0.451 0.610
FCSS 0.830 0.656 0.494 0.660
FCSS w/Lcl 0.832 0.662 0.512 0.668
CAT-FCSS 0.798 0.625 0.500 0.641
CAT-FCSS w/Lcl 0.858 0.680 0.522 0.687

4.2 Matching Results

4.2.1 Results on Taniai Benchmark

We first evaluated the FCSS and CAT-FCSS descriptors on
the Taniai benchmark [12], which consists of 400 image pairs
divided into three groups: FG3DCar [66], JODS [67], and
PASCAL [68]. As in [12], matching accuracy was measured
by computing the proportion of foreground pixels with
an absolute flow endpoint error that is smaller than a
certain threshold T , after resizing images so that its larger
dimension is 100 pixels. Table 1 summarizes the matching
accuracy for various feature descriptors with the SF opti-
mization fixed (T = 5 pixels). Interestingly, while both the
CNN-based descriptors [14], [15], [16], [17], [44] and the
handcrafted descriptors [10], [11], [21], [23] tend to show
similar performance, our method outperforms both of these
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Fig. 9. Average matching accuracy with respect to endpoint error thresh-
old on the Taniai benchmark [12]: (a) various feature descriptors with SF
optimization, (b) state-of-the-art correspondence techniques on image
pairs within (from top to bottom) FG3DCar, JODS, and PASCAL on the
Taniai benchmark [12].

approaches. Fig. 9 shows the flow accuracy with varying
error thresholds. Fig. 10 and Fig. 11 show qualitative results.
Table 2 compares the matching accuracy (T = 5 pixels)
with other correspondence techniques. Taniai et al. [12] and
Proposal Flow [13] provide plausible flow fields, but their
methods have limitations due to their usage of handcrafted
features. Thanks to its invariance to intra-class variations
and precise localization ability, our FCSS achieves the best

TABLE 2
Matching accuracy compared to state-of-the-art correspondence

techniques on the Taniai benchmark [12].

Methods FG3D. JODS PASC. Avg.
SIFT Flow [2] 0.632 0.509 0.360 0.500
DSP [3] 0.487 0.465 0.382 0.445
Zhou et al. [42] 0.721 0.514 0.436 0.556
Taniai et al. [12] 0.830 0.595 0.483 0.636
SLS [45] 0.525 0.519 0.320 0.457
SSF [46] 0.687 0.344 0.370 0.467
SegSIFT [63] 0.612 0.421 0.331 0.457
Lin et al. [64] 0.406 0.283 0.161 0.283
DFF [4] 0.489 0.296 0.214 0.333
GDSP [47] 0.639 0.374 0.368 0.459
Proposal Flow [13] 0.786 0.653 0.531 0.657
FCSS w/PF [13] 0.839 0.635 0.582 0.685
CAT-FCSS w/PF [13] 0.842 0.641 0.586 0.690
CAT-FCSS w/Lcl,PF [13] 0.846 0.667 0.591 0.701

TABLE 3
Matching accuracy for various feature descriptors with SF optimization
on the Proposal Flow-WILLOW benchmark [13]. LIFT† denotes results

of LIFT [17] with densely sampled windows.

Methods PCK
α = 0.05 α = 0.1 α = 0.15

SIFT [2] 0.247 0.380 0.504
DAISY [11] 0.324 0.456 0.555
LSS [21] 0.347 0.504 0.626
DASC [23] 0.255 0.411 0.564
DeepD. [16] 0.187 0.308 0.430
DeepC. [15] 0.212 0.364 0.518
MatchN. [14] 0.205 0.338 0.476
LIFT [17] 0.197 0.322 0.449
LIFT† [17] 0.224 0.346 0.489
UCN [44] 0.221 0.354 0.492
VGG [18] 0.224 0.388 0.555
VGG w/S-CSS 0.239 0.422 0.595
VGG w/M-CSS 0.344 0.514 0.676
FCSS 0.354 0.532 0.681
FCSS w/Lcl 0.356 0.534 0.684
CAT-FCSS 0.361 0.541 0.686
CAT-FCSS w/Lcl 0.362 0.546 0.692

results both quantitatively and qualitatively. Furthermore,
since almost all of the image pairs on the Taniai bench-
mark [12] have nearly identical poses and do not have
severe geometric variations, our CAT-FCSS provides rather
degraded performance compared to FCSS. However, on
other following benchmarks with severe geometric varia-
tions, CAT-FCSS exhibits clearly boosted matching accuracy.
In the results of ‘VGG w/S-CSS†’, we found that even initial
random patterns of the FCSS network can provide relatively
reliable performance, which demonstrates that FCSS can
be learned with enough initial putative training samples.
Furthermore, when using the classification loss Lcl to learn
the FCSS and CAT-FCSS, the matching accuracy was highly
improved compared to the cases of using the contrastive loss
Lco, which means that with a more powerful loss fuction,
the CAT layer can provide robustness even for image pairs
having similar geometric configurations.

4.2.2 Results on Proposal Flow-WILLOW Benchmark
We also evaluated our descriptor on the Proposal Flow-
WILLOW benchmark [13], which includes 10 object sub-
classes with 10 keypoint annotations for each image. For
the evaluation metric, we used the probability of correct
keypoint (PCK) between flow-warped keypoints and the
ground truth [13], [36]. The warped keypoints are deemed



SUBMISSION TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018 10

(a) (b) (c) (d) (e) (f) (g) (h)
Fig. 12. Qualitative results for various feature descriptors with fixed SF optimization on the Proposal Flow-PASCAL benchmark [25]: (a) source
image, (b) target image, (c) DAISY [11], (d) LSS [21], (e) DASC [23], (f) VGG [18], (g) FCSS w/Lcl, and (h) CAT-FCSS w/Lcl.

(a) (b) (c) (d) (e) (f) (g) (h)
Fig. 13. Qualitative results for various feature descriptors with fixed NN optimization on the Proposal Flow-PASCAL benchmark [25]: (a) source
image, (b) target image, (c) source key-points, (d) LSS [21], (e) DASC [23], (f) VGG [18], (g) FCSS w/Lcl, and (h) CAT-FCSS w/Lcl . For the
visualization, color-coded source key-points were warped to the target images using correspondences.

TABLE 4
Matching accuracy compared to state-of-the-art correspondence

techniques on the Proposal Flow-WILLOW benchmark [13].

Methods PCK
α = 0.05 α = 0.1 α = 0.15

SIFT Flow [2] 0.247 0.380 0.504
DSP [3] 0.239 0.364 0.493
Zhou et al. [42] 0.197 0.524 0.664
SSF [46] 0.292 0.401 0.531
Lin et al. [64] 0.192 0.354 0.487
DFF [4] 0.241 0.362 0.510
GDSP [47] 0.242 0.487 0.512
Proposal Flow [13] 0.284 0.568 0.682
FCSS w/PF [13] 0.295 0.584 0.715
CAT-FCSS w/PF [13] 0.301 0.587 0.721
CAT-FCSS w/Lcl,PF [13] 0.311 0.579 0.725

to be correctly predicted if they lie within α · max(hb, wb)
pixels of the ground-truth keypoints for α ∈ [0, 1], where hb
and wb are the height and width of the object bounding box,
respectively. The PCK values were measured for various
feature descriptors with SF optimization in Table 3, and for
different correspondence techniques in Table 4. Our FCSS
descriptor with SF optimization shows competitive perfor-
mance compared to recent state-of-the-art correspondence
methods. When combined with PF optimization instead, our
method significantly outperforms the existing state-of-the-
art descriptors and correspondence techniques.

4.2.3 Results on Proposal Flow-PASCAL Benchmark
We evaluated our descriptor on the Proposal Flow-PASCAL
benchmark [25], which samples 1,351 image pairs for 20
object categories from PASCAL keypoint annotations [69].
For the evaluation metric, we used the PCK between flow-
warped keypoints and the ground truth [13] as in the exper-
iments on the Proposal Flow-WILLOW benchmark [13].

TABLE 5
Matching accuracy for various feature descriptors with SF optimization

on the Proposal Flow-PASCAL benchmark [25].

Methods PCK
α = 0.05 α = 0.1 α = 0.15

SIFT [2] 0.192 0.334 0.492
DAISY [11] 0.189 0.324 0.489
LSS [21] 0.201 0.331 0.481
DASC [23] 0.204 0.364 0.601
DeepD. [16] 0.189 0.324 0.412
DeepC. [15] 0.207 0.367 0.473
MatchN. [14] 0.212 0.343 0.397
LIFT [17] 0.227 0.359 0.421
UCN [44] 0.234 0.367 0.431
FCSS w/Lcl 0.269 0.462 0.636
CAT-FCSS w/Lcl 0.274 0.468 0.647

The PCK values were measured for various feature de-
scriptors with SF optimization in Table 5, and for different
correspondence techniques in Table 6. Fig. 12 and Fig. 13
show qualitative results for dense flow estimation. Our
FCSS descriptor exhibits performance competitive to state-
of-the-art handcrafted and CNN-based descriptors. Our
CAT-FCSS descriptor was found to be especially reliable for
severe geometric deformations.

4.2.4 Results on CUB-200-2011 Benchmark
Lastly, we evaluated our descriptor on the CUB-200-2011
dataset [26], which contains 11,788 images of 200 bird cat-
egories, with 15 parts annotated. We followed the experi-
mental configuration in [65], which utilizes the training set
to extract training pairs and 5,000 other image pairs from the
validation subset as testing pairs. For the evaluation metric,
we used the PCK between flow-warped keypoints and the
ground truth [65], where a match is considered correct if the
predicted point is within α ·Ld of the mean diagonal length
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(a) (b) (c) (d) (e) (f) (g) (h) (i)
Fig. 15. Visualizations of non-parametric part segmentation on the PASCAL-VOC part dataset [27]: (a) source image, (b) target image, (c) source
mask, (d) LSS [70], (e) DeepD. [16], (f) LIFT [17], (g) FCSS, (h) CAT-FCSS w/Lcl, and (i) target mask.

(a) (b) (c) (d) (e) (f) (g) (h) (i)
Fig. 16. Visualizations of foreground mask transfer on the Caltech-101 dataset [28]: (a) source image, (b) target image, (c) source mask, (d)
SIFT [10], (e) DASC [23], (f) MatchN. [14], (g) LIFT [17], (h) FCSS, and (i) target mask.
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Fig. 14. Average PCK on the CUB-200-2011 benchmark [26].

of the two images Ld. We uniformly sample points on the
foreground with a stride of 8 as keypoints for matching.

The average PCK was measured for various descriptors
and correspondence techniques in Fig. 17. In this experi-
ment, we evaluated our descriptor using nearest neighbor
(NN) search to evaluate the performance contribution of the
descriptor, following [65]. Our FCSS and CAT-FCSS descrip-
tors with NN search show competitive performance com-
pared to recent state-of-the-art optimization based methods
such as DSP [3] and WarpNet [65].

4.3 Applications

4.3.1 Non-parametric Part Segmentation
To verify the superiority of our descriptor, we applied our
descriptor to the non-parameteric part segmentation task on
the dataset provided by [5], where the images are sampled
from the PASCAL-VOC part dataset [27]. In this appli-
cation, part segments of the target image were estimated
by warping ground truth part segments of the source im-
age using dense correspondences, enabling non-parametric
part segmentation. With human-annotated part segments,
we measured part matching accuracy using the weighted
intersection over union (IoU) score between transferred
segments and ground truths, with weights determined by
the pixel area of each part. To evaluate alignment accuracy,
we measured the PCK metric using keypoint annotations

TABLE 6
Matching accuracy compared to state-of-the-art correspondence

techniques on the Proposal Flow-PASCAL benchmark [25].

Methods PCK
α = 0.05 α = 0.1 α = 0.15

SIFT Flow [2] 0.192 0.334 0.492
DSP [3] 0.198 0.372 0.414
Zhou et al. [42] 0.181 0.410 0.624
SSF [46] 0.210 0.382 0.511
Lin et al. [64] 0.204 0.368 0.498
DFF [4] 0.214 0.372 0.522
GDSP [47] 0.222 0.412 0.524
Proposal Flow [13] 0.242 0.451 0.640
CAT-FCSS w/Lcl,PF [13] 0.270 0.472 0.646

for the 12 rigid PASCAL classes [71]. Table 7 summarizes
the matching accuracy compared to state-of-the-art corre-
spondence methods. Fig. 15 visualizes estimated dense flow
with color-coded part segments. From the results, our FCSS
descriptor is found to yield the highest matching accuracy.

4.3.2 Foreground Mask Detection
Furthermore, we applied our descriptor to the foreground
mask detection task on the Caltech-101 dataset [28], where
the ground truth foreground mask of the source images
were transferred to the target images by using dense corre-
spondences. Following the experimental protocol in [3], we
randomly selected 15 pairs of images for each object class,
and evaluated matching accuracy with three metrics: label
transfer accuracy (LT-ACC) [73], the IoU metric, and the
localization error (LOC-ERR) of corresponding pixel posi-
tions. Table 8 summarizes the matching accuracy compared
to the state-of-the-art correspondence methods. Fig. 16 vi-
sualizes estimated dense flow fields with mask transfer.
For the results, our FCSS descriptor clearly outperforms the
comparison techniques.

4.3.3 Non-parametric Semantic Segmentation
We also applied our descriptor to the non-parameteric se-
mantic segmentation task on the PASCAL-VOC 2012 bench-
mark [29]. Similar to the preceding experiments, we cast
the non-parametric segmantic segmentation problem as a
segmentation mask transfer between source and target im-
ages. In [73], similar approaches were used for single image
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(a) (b) (c) (d) (e) (f) (g) (h)
Fig. 17. Visualization of non-parametric semantic segmentation on the the PASCAL-VOC 2012 benchmark [29]: (a) source image, (b) target
image, (c) source semantic segments, (d) DAISY [11], (e) VGG [18], (f) FCSS w/Lcl, (g) CAT-FCSS w/Lcl, and (h) target semantic segments. For
visualization, color-coded source semantic segments were warped to the target images using correspondences.

(a) (b) (c) (d) (e) (f) (g) (h)
Fig. 18. Visualization of non-parametric object detection on the Proposal Flow-PASCAL benchmark [25]: (a) source image, (b) target image, (c)
source ground truth object bounding box, (d) object proposals [72] in target image, object detection results using (e) VGG [18], (f) UCN [44], (g)
CAT-FCSS w/Lcl, and (h) target ground truth object bounding box.

TABLE 7
Quantitative results for non-parametric part segmentation on the

PASCAL-VOC part dataset [27].

Methods IoU PCK
α = 0.05 α = 0.1

DFF [4] 0.36 0.14 0.31
GDSP [47] 0.40 0.16 0.34
FlowWeb [3] 0.43 0.26 -
Zhou et al. [42] - - 0.24
Proposal Flow [13] 0.41 0.17 0.36
UCN [44] - 0.26 0.44
FCSS w/SF [2] 0.44 0.28 0.47
FCSS w/PF [13] 0.46 0.29 0.46
CAT-FCSS w/SF [2] 0.41 0.31 0.45
CAT-FCSS w/PF [13] 0.47 0.30 0.48
CAT-FCSS w/Lcl,SF [2] 0.45 0.29 0.49
CAT-FCSS w/Lcl,PF [13] 0.46 0.29 0.51

TABLE 8
Quantitative results for foreground mask detection on the Caltech-101

dataset [28].

Methods LT-ACC IoU LOC-ERR
DSP [3] 0.77 0.47 0.35
SIFT Flow [2] 0.75 0.48 0.32
Proposal Flow [13] 0.78 0.50 0.25
VGG [18] w/SF [2] 0.78 0.51 0.25
FCSS w/SF [2] 0.80 0.50 0.21
FCSS w/PF [2] 0.83 0.52 0.22
CAT-FCSS w/Lcl,SF [2] 0.81 0.53 0.19
CAT-FCSS w/Lcl,PF [13] 0.84 0.55 0.20

scene parsing by leveraging its nearest neighbors from a
large database containing fully annotated images. In this
experiment, we only consider a simplified version of [73] in
which we transfer ground truth segmentation masks from a
single target image queried using GIST [74]. For quantitative
evaluations, we adopted the mean intersection over union
(mIoU) between the predicted segmentations and ground
truths on the validation sets of [29]. Fig. 17 shows the pre-
dicted semantic segmentation using dense correspondences.
Table 9 presents quantitative comparisons to state-of-the-art
correspondence methods. Our FCSS and CAT-FCSS show
state-of-the-art performance even for challenging scenarios

TABLE 9
Quantitative results for non-parametric semantic segmentation on the

PASCAL-VOC 2012 benchmark [29].

Methods mIoU
DeepD. [16] 0.39
DeepC. [15] 0.38
MatchN. [14] 0.46
LIFT [17] 0.51
VGG [18] 0.46
FCSS w/Lcl 0.59
CAT-FCSS w/Lcl 0.62

TABLE 10
Quantitative results for non-parametric object detection on the Proposal

Flow-PASCAL benchmark [25].

Methods mAP (%)
DeepD. [16] 0.46
DeepC. [15] 0.42
MatchN. [14] 0.49
LIFT [17] 0.45
VGG [18] 0.51
FCSS w/Lcl 0.60
CAT-FCSS w/Lcl 0.63

in semantic segmentation.

4.3.4 Non-parametric Object Detection
Finally, we applied our descriptor to the non-parametric
object detection task on the Proposal Flow-PASCAL bench-
mark [25]. In this experiment, we demonstrate that dense
feature descriptors such as our FCSS and CAT-FCSS can be
used to detect objects in a non-parametric manner. Specifi-
cally, for each feature descriptor of ground truth bounding
boxes in the source image, we first estimate the similarities
between the features of possible object bounding boxes
detected by an object proposal method [72] in the target
image, and then detect the objects based on the similarities.
We extracted features for the k-th object proposals Dop

k
using spatial pyramid matching [75] from dense descriptors
Di as in [25]. We also measured the normalized feature
similarity that minimizes exp(−|Dop

k −D
′,op
k |). Note that

we did not apply any post-processing techniques such as
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TABLE 11
Evaluation of computation time in constructing a descriptor in seconds

(†Runtime measured on a GPU).

Image size SIFT DAISY VGG FCSS CAT-FCSS

800× 600 252 3.8 7.3/1.6† 9.4/2.6† 11.2/3.2†

non-maximum suppression. For quantitative evaluation, we
measured the mean average precision (mAP) as in [57], [58],
[76] for 1,351 image pairs from [25]. Fig. 18 visualizes the
object detection results, and Table 10 shows quantitative
evaluations. These experiments demonstrate that our FCSS
and CAT-FCSS can be used for the non-parameteric object
detection task.

4.4 Runtime Analysis

In Table 11, we compared the computational speed of
FCSS and CAT-FCSS to state-of-the-art descriptors including
handcrafted and CNN-based descriptors. For the CNN-
based methods including VGG [18], FCSS, and CAT-FCSS,
the computation times were also measured on a GPU. Even
though our descriptors need more computation compared
to the handcrafted descriptors such as DAISY [11] on a CPU,
they exhibit clearly better matching performance.

5 CONCLUSION

We presented the FCSS descriptor, which formulates local
self-similarity within a fully convolutional network. In con-
trast to the previous LSS-based techniques, the sampling
patterns and the self-similarity measure were jointly learned
within the proposed network in an end-to-end and multi-
scale manner. Furthermore, to address affine deformations
in dense semantic correspondence, we proposed the CAT
layer that first estimates explicit affine transformation fields
at each pixel and then transforms the sampling patterns
and corresponding receptive fields. The network was ad-
ditionally trained in a weakly-supervised manner, using
correspondence consistency within object bounding boxes
provided in the training image pairs.

Even though our descriptor has shown reliable perfor-
mance on various benchmarks and applications, it has some
limitations. Since our descriptor can be learned with sailent-
object database, it might not estimate correspondences of
the background well as shown in Fig. 10, which would limit
the applicability of the descriptor for scene-level correspon-
dence. Furthermore, the computation time of our descriptor
does not allow it to be used in real-time applications. To
overcome these, our further works will be focused on the
generalizaion of our descriptor to deal with scene-level
matching and more efficient computation.
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