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Dense Cross-Modal Correspondence Estimation
with the Deep Self-Correlation Descriptor

Seungryong Kim, Member, IEEE, Dongbo Min, Senior Member, IEEE, Stephen Lin, Member, IEEE,
and Kwanghoon Sohn, Senior Member, IEEE

Abstract—We present the deep self-correlation (DSC) descriptor for establishing dense correspondences between images taken
under different imaging modalities, such as different spectral ranges or lighting conditions. In this descriptor, local self-similar structure
is modeled in a hierarchical manner that yields more precise localization ability and greater robustness to non-rigid image deformations
than state-of-the-art descriptors. Specifically, DSC first computes multiple self-correlation surfaces over a local support window for
randomly sampled patches, and then builds hierarchical self-correlation surfaces through average pooling. The feature responses on
the self-correlation surfaces are then encoded through spatial pyramid pooling in a circular configuration. To better handle geometric
variations such as scale and rotation, we further propose the geometry-invariant DSC (GI-DSC) that leverages a multi-scale
self-correlation surface and a canonical orientation estimation technique. In contrast to descriptors based on deep convolutional neural
networks (CNNs), DSC and GI-DSC are training-free, i.e., handcrafted descriptors, are robust to cross-modal imaging, and cannot be
overfitted to the appearance variations of specific modalities. The state-of-the-art performance of DSC and GI-DSC on challenging
cases of cross-modal image pairs with photometric and geometric variations is demonstrated through extensive experiments.

Index Terms—Cross-modal correspondence, hierarchical structure, self-correlation, local self-similarity, non-rigid deformation

1 INTRODUCTION

RECENTLY in many computer vision and computational
photography applications, images captured under dif-
ferent imaging modalities have been used to supplement the
data provided in color images. Typical examples of other
imaging modalities include infrared [1], [2], [3] and dark
flash [4] photography. More broadly, photos taken under
different imaging conditions, such as different exposure
settings [5], blur levels [6], [7], and illumination [8], can also
be considered as cross-modal [9], [10].

Establishing dense correspondences between cross-
modal image pairs is essential for combining their disparate
information. However, basic visual properties, including
color, gradients, and structural similarity, are frequently not
shared across cross-modal images, and this degrades match-
ing by conventional feature descriptors [11], [12]. Moreover,
geometric variations frequently appear for cross-modal im-
ages that are taken under different viewpoints or contain
moving objects. Although powerful global optimizers may
help to improve the accuracy of correspondence estimation
to some extent [13], [14], inherent limitations exist without
the use of suitable matching descriptors [15]. The most
popular local descriptor is scale invariant feature trans-
form (SIFT) [11], which provides relatively good matching
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Fig. 1. Examples of matching cost profiles, computed with different
descriptors such as SIFT [11], VGG [16], and DASC [10] along the
scan lines of A, B, and C for image pairs under non-rigid deformations
and illumination changes. In comparison to other handcrafted and deep
CNN-based descriptors, DSC yields more reliable global minima.

performance when there are small photometric variations.
However, conventional descriptors such as SIFT often fail to
capture reliable matching evidence in cross-modal images
due to their different visual properties [9], [10].

Features learned from convolutional neural networks
(CNNs) [17], [18], [19], [20], [21], [22], [23], [24] have recently
emerged as a robust alternative. However, CNN-based de-
scriptors cannot satisfactorily deal with severe differences
in cross-modal appearance, since the shared convolutional
kernels across images lead to inconsistent responses [21],
[25], similar to conventional handcrafted descriptors. Fur-
thermore, some of these methods are designed for estimat-
ing sparse correspondences [22], [23], [26] and cannot in
practice provide dense descriptors due to their high com-
putational complexity. Of particular importance, there lacks
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a benchmark with dense ground-truth correspondences on
cross-modal images, making supervised learning of CNNs
less feasible for this task. Furthermore, networks trained on
small-scale datasets with different modalities may often be
overfitted to the appearance variations of specific modali-
ties.

To address the problem of cross-modal appearance and
shape changes, feature descriptors have been proposed
based on local self-similarity (LSS) [27], which is moti-
vated by the notion that the geometric layout of local
internal self-similarities is relatively insensitive to imag-
ing properties. The state-of-the-art descriptor for cross-
modal dense correspondence, called dense adaptive self-
correlation (DASC) [10], [28], makes use of LSS and has
demonstrated high accuracy and speed on cross-modal
image pairs. However, DASC suffers from two significant
shortcomings. One is its limited discriminative power due
to a limited set of patch sampling patterns used for mod-
eling internal self-similarities. In fact, the matching perfor-
mance of DASC may fall short of CNN-based descriptors
on images that share the same modality. The other major
shortcoming is that the DASC descriptor does not provide
the flexibility to deal with non-rigid deformations, which
leads to lower robustness in matching. More recently, a
fully convolutional self-similarity (FCSS) descriptor [24],
[29] was proposed to formulate LSS within a deep network.
However, its application to cross-modal correspondence has
not been studied, and it is also vulnerable to non-rigid
geometric variations.

In this paper, we introduce a novel descriptor, called
deep self-correlation (DSC), that overcomes the shortcom-
ings of DASC [10], [28] and FCSS [24], [29] while providing
robust dense cross-modal correspondence. This work is
motivated by the observation that local self-similarity can
be formulated in a hierarchical structure to enhance local-
ization ability and gain robustness to non-rigid photometric
and geometric deformations. Unlike DASC [10], [28] and
FCSS [24], [29] that select patch pairs within a support
window and calculate the self-similarity between them, DSC
computes self-correlation surfaces that more comprehen-
sively encode the intrinsic structure by calculating the self-
similarity between randomly selected patches and all of the
patches within the support window. These self-correlational
responses are aggregated through spatial pyramid pooling
in a circular configuration, which yields a representation
less sensitive to non-rigid image deformations than the
fixed patch selection strategy used in DASC [10], [28] and
FCSS [24], [29]. To further enhance localization ability and
robustness, we build hierarchical self-correlation surfaces,
together with nonlinear and normalization layers. For ef-
ficient computation of DSC over densely sampled pixels,
we calculate the self-correlation surfaces through fast edge-
aware filtering.

Furthermore, to better address geometric variations that
may exist across cross-modal image pairs, we propose the
geometry-invariant DSC descriptor, called GI-DSC. In for-
mulating this extension, we leverage the observation that
geometric deformation fields across cross-modal images can
be well approximated locally by a similarity transformation
(i.e., translation, rotation, and uniform scale transforma-
tion). Specifically, to deal with scale deformations at each

pixel, multi-scale self-correlation surfaces are first measured
on the image pyramid, and then fused by max-pooling
to encode maximal self-similarities of each sampling pat-
tern across scales. Canonical orientations on each pixel are
also estimated with the maximum orientation bin weighted
by self-correlation surfaces, which are used to build a
geometry-invariant descriptor.

Compared to existing CNN-based descriptors [17], [18],
[19], [20], [21], [22], [23], [24] (as well as FCSS [24], [29]), DSC
requires no training data, since the convolutional kernels
are defined using the local self-similarity between pairs of
image patches. Fig. 1 illustrates the robustness of DSC for
image pairs against non-rigid deformations and illumina-
tion changes in comparison to existing handcrafted and
even deep CNN-based methods.

In the experimental results, we show that DSC outper-
forms existing feature descriptors and similarity measures
on various benchmarks having photometric and geometric
variations: (1) the Middlebury stereo benchmark [30] con-
taining illumination and exposure variations; (2) a cross-
modal and cross-spectral dataset [9] including RGB and
near-infrared (NIR) images [1], [9], different exposures [5],
[9], flash-noflash images [8], blurry images [6], [7], and RGB-
depth images [9]; (3) the DaLl benchmark [31] containing
non-rigid deformations; (4) the tri-modal human body seg-
mentation benchmark [32] including RGB, depth, and far-
infrared (FIR) images; and (5) the DIML benchmark [28]
including RGB images with both photometric and geometric
variations.

This manuscript extends the conference version of this
work [33] through (1) a geometry-invariant extension of
DSC, called GI-DSC; (2) an in-depth analysis of DSC and
GI-DSC; and (3) an extensive comparative study with state-
of-the-art CNN-based descriptors using various datasets.
The source code is available online at our project webpage:
http://diml.yonsei.ac.kr/~srkim/DSC/.

2 RELATED WORK
2.1 Handcrafted and Learned Feature Descriptors

Conventional gradient-based descriptors, such as SIFT [11]
and DAISY [12], as well as intensity comparison-based
binary descriptors, such as BRIEF [34], have shown a
limited performance in dense correspondence estimation
between cross-modal image pairs. Besides these hand-
crafted features, several attempts have been made using
machine learning algorithms to derive features from large-
scale datasets [17], [35]. A few of these methods use deep
CNN:s [36], which have revolutionized image-level classifi-
cation, to learn discriminative descriptors for local patches.
For designing explicit feature descriptors based on a CNN
architecture, immediate activations are extracted as the
descriptor [17], [18], [19], [20], [21], [22], [23], [24], and
have been shown to be effective for this patch-level task.
However, even though CNN-based descriptors encode a
discriminative structure with a deep architecture, they have
inherent limitations in cross-modal image correspondence
because they are derived from convolutional layers us-
ing shared kernels or volumes [21], [25]. Furthermore, the
dearth of ground-truth data for dense cross-modal corre-
spondence presents an obstacle for supervised learning of
CNN:s in this context.
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To estimate cross-modal image correspondences, vari-
ants of the SIFT descriptor have been developed [37], but
these gradient-based descriptors maintain an inherent lim-
itation similar to SIFT in dealing with image gradients
that vary differently between modalities. For illumination
invariant correspondences, Wang et al. proposed the local
intensity order pattern (LIOP) descriptor [38], but radiomet-
ric variations often alter the relative order of pixel intensi-
ties. Simo-Serra et al. proposed the deformation and light
invariant (DaLlI) descriptor [31] to provide high resilience to
non-rigid image transformations and illumination changes,
but it in practice cannot provide dense descriptors in the im-
age domain due to its heavy computational load. Recently,
the cross-spectral similarity model [39], [40] through CNNs
has shown improved performance on RGB-NIR correspon-
dence, but it requires supervised learning, thus limiting its
applicability to various cross-modal correspondence tasks.

Schechtman and Irani introduced the local self-similarity
(LSS) descriptor [27] for the purpose of template matching,
and achieved impressive results in object detection and
retrieval. By employing LSS, many approaches have tried to
solve for cross-modal correspondence [41], [42], [43]. How-
ever, none of these approaches scale well to dense matching
due to low discriminative power and high complexity. In-
spired by LSS, Kim et al. proposed the DASC descriptor to
estimate cross-modal dense correspondences [10]. Though
it can provide satisfactory performance, it is not able to
handle non-rigid deformations and has limited discrimi-
native power due to its fixed patch pooling scheme. More
recently, the FCSS descriptor [24] formulated LSS within a
fully convolutional network where patch sampling patterns
and the self-similarity measure are both learned. Although
FCSS improved performance dramatically in semantic cor-
respondence estimation, it is tailored to object-level corre-
spondence estimation, instead of cross-modal image pairs at
a scene-level. Moreover, it cannot deal with severe geomet-
ric variations which frequently appear across cross-modal
images.

2.2 Area-Based Similarity Measures

A popular measure for registration of cross-modal med-
ical images is mutual information (MI) [44], based on
the entropy of the joint probability distribution function,
but it provides reliable performance only for variations
undergoing a global transformation. In [45], this issue is
alleviated to some extent by leveraging a locally adaptive
weight obtained from SIFT matching but its performance is
still limited on cross-modal variation [46]. Although cross-
correlation based methods such as adaptive normalized
cross-correlation (ANCC) [47] produce satisfactory results
for locally linear variations, they are less effective against
more substantial modality variations. Irani et al. employed
cross-correlation on a Laplacian energy map for measuring
multi-sensor image similarity [48], but this exhibits limited
performance in general image matching tasks. Robust se-
lective normalized cross-correlation (RSNCC) [9] was pro-
posed for dense alignment between cross-modal images,
but as an intensity based measure it can still be sensitive to
cross-modal variations. DeepMatching [49] was proposed to
compute dense correspondences by employing a hierarchi-

cal pooling scheme like in a CNN, but it is not designed to
handle cross-modal matching.

2.3 Geometry-Invariant Correspondence Estimation

To alleviate geometric variation problems in establishing
dense correspondences, many methods have been proposed
based on SIFT flow (SF) [13] optimization, including de-
formable spatial pyramid (DSP) [14], scale-less SIFT flow
(SLS) [50], scale-space SIFT flow (SSF) [51], and generalized
DSP (GDSP) [52]. However, the large search spaces for es-
tablishing geometry-invariant dense correspondence make
computational complexity a critical limitation of these meth-
ods. Generalized PatchMatch (GPM) [53] was proposed for
efficient matching based on a randomized search scheme.
DAISY Filter Flow (DFF) [54], which utilizes the DAISY
descriptor [12] with the PatchMatch Filter (PMF) [55], was
proposed to provide geometric invariance. However, their
weak spatial smoothness often induces mismatched re-
sults. While the aforementioned methods have attempted
to address the problem from an optimization perspective,
various geometry-invariant descriptors have also been de-
veloped for geometry-invariant correspondence estimation.
The scale invariant descriptor (SID) [56] was proposed to
encode geometric robustness in the descriptor itself, but it
does not deal with multi-modal matching. A segmentation-
aware approach [57] was presented to provide geometric
robustness for descriptors, e.g., SIFT [11] or SID [56], but
it can have a negative effect on the discriminative power
of the descriptor. More recently, as an extension of DASC,
geometry-invariant DASC (GI-DASC) [28] employed DASC
in a superpixel-based representation with estimated geo-
metric fields. Although it provides improved robustness to
geometric variations, it inherits the limitations of DASC,
and its performance is sensitive to superpixel segmentation
accuracy.

3 BACKGROUND

Let us define an image as f; : Z — R for pixel i, where
T C N? is a discrete image domain. Given the image f;, a
dense descriptor D; : T — RE with a feature dimension of
L is defined on a local support window R;.

Unlike conventional descriptors which rely on basic
visual properties such as color and gradients [11], [12], LSS-
based descriptors provide robustness to different imaging
modalities since internal local self-similarities are preserved
across cross-modal image pairs [10], [24], [27]. As shown in
Fig. 2(a), LSS [27] first computes the self-correlation surface,
discretizes the correlation surface into log-polar bins, and
then stores the maximum correlation value of each bin. For-
mally, it generates an L' x 1 feature vector D = [ J,d*(1)
for [ € {1, ..., L'}, with d**(I) computed as

d@(l) = j&%}({l){exp(—s@j)/ac)}a M

where a log-polar bin is defined as B; = {j|j € Ri, pr—1 <
li—7] < prypa—1 < ZL(i—j) < ¢o} with a log radius
pr for r € {1,---,N,} and a quantized angle ¢, for
a € {1,---,Ng} with pg = 0 and ¢y = 0. Each pair of
r and a is associated with a unique index [. (i, ) is the
correlation between patches F; and F, computed using the
sum of squared differences (SSD) [27]. Though LSS provides
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Fig. 2. lllustration of (a) LSS [27] using center-biased dense max
pooling, (b) DASC [10] and FCSS [24] using patch-wise receptive field
pooling, and (c) our DSC. Boxes, formed by solid and dotted lines, depict
source and target patches. DSC incorporates circular spatial pyramid
pooling on hierarchical self-correlation surfaces.

robustness to modality variations, matching details are not
well preserved and its significant computation does not
scale well for estimating dense correspondences.

Inspired by LSS [27], DASC [10] encodes the self-
similarity between patch-wise receptive fields sampled from
alog-polar circular point set P; as shown in Fig. 2(b). It is de-
fined such that P; = {j|j € Ri,|i — j| = pr, £(i — §) = ¢a},
which has a higher density of points near the center pixel,
similar to DAISY [12]. DASC is encoded with a set of sim-
ilarities between patch pairs of sampling patterns selected
from P; such that Ddasc = | J,ddase(]) for [ € {1,..., L4}

ddase (1) = exp(—(1 — [C(si4,tia)]) /o), @)

where s; ; and t; ; are the [*" selected sampling pattern from

P;. Patch-wise similarity is computed with an exponential
function with a bandwidth of 0., which has been widely
used for robust estimation [58]. Here, an absolute value
of C(s;1,ti;1) is used for mitigating the effect of intensity
reverses. C(s;;,t;;) is computed using an adaptive self-
correlation measure inspired by [47]. Although the DASC
descriptor has shown satisfactory results for cross-modal
dense correspondence estimation, its randomized receptive
field pooling has limited descriptive power and does not
accommodate non-rigid deformations.

4 THE DSC DESCRIPTOR
4.1 Motivation and Overview

Inspired by DASC [10], [28], our DSC descriptor also
represents an adaptive self-correlation measure between
two patches within a local support window. However, we
adopt a different strategy where hierarchical self-correlation
surfaces are built through the spatial aggregation of self-
correlation responses on a single level, and feature responses
more comprehensively encode local self-similar structure to
improve localization ability and robustness to non-rigid im-
age deformation (Sec. 4.2). Densely sampled descriptors are
efficiently computed over an entire image using a method

(a) (b) () (d)
Fig. 3. Computation of the single self-correlation (SSC) descriptor for
(a) a local support window with random samples. (b) For each random
patch, a self-correlation surface is computed using an adaptive self-
correlation measure. (c) A self-correlation response is then obtained
through circular spatial pyramid pooling (C-SPP). (d) The responses

from C-SPP are concatenated into a feature vector.
NS A 4 @
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Fig. 4. Examples of circular spatial pyramidal bins SB. The total number

of binsis Ngg = 25:2 2% + 1, where S represents the pyramid level.

based on fast edge-aware filtering (Sec. 4.3). We further
build hierarchical self-correlation surfaces to enhance the
robustness of the descriptor (Sec. 4.4). Finally, to alleviate
problems caused by geometric variations, scale and/or ro-
tation, deformations on each pixel are addressed in building
the GI-DSC descriptor (Sec. 4.5). Fig. 2(c) illustrates the
DSC descriptor, which incorporates circular spatial pyramid
pooling on hierarchical self-correlation surfaces.

4.2 SSC: Single Self-Correlation

To overcome the limitations of self-similarity in DASC [10]
and FCSS [24] descriptors, our approach builds hierarchical
self-correlation surfaces, where feature responses are ob-
tained through circular spatial pyramid pooling. We start
by describing a single-layer version of DSC, which we refer
to as single self-correlation (SSC).

4.2.1 Self-Correlations

To build multiple self-correlation surfaces in SSC, we ran-
domly select K points from a log-polar point set P; defined
within a local support window. We then convolve a patch
Fr,,, centered at the k-th point r;; with all patches F;,
defined for k € {1,..,K} and j € R; as shown in Fig.
3(b). Similar to DASC [10], the similarity C(r; 1, j) between
patch pairs is measured using an adaptive self-correlation,
which is known to be effective in addressing cross-modality.
With (4, k) omitted for simplicity, the C(r, j) is computed as
follows:

> wrrwj g (frr = G (fir = @)
C(r,j) = =

)

|5 e e - G::)V\/z, sy = G

©)
where 7' € F, and j' € Fj, and G} = 3wy fr and
G} = > wjj fjr represent weighted averages of f.» and
fj. Similar to DASC [10], the weight w,.,» represents how
similar two pixels r and 7’ are, and is normalized, ie.,
> wrp = 1. It may be defined using any form of edge-
aware weighting [59], [60], which increases precision in de-

scribing self-similarities and boosts matching performance.
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Fig. 5. Efficient computation of self-correlation surfaces in an image:
(a) An image f; with a doubled support window R and random sam-
ples. (b) A 1-D vector representation of a self-correlation surface. (c)
Self-correlation surfaces. (d) Self-correlation responses after C-SPP.
With edge-aware filtering and response reformulation, self-correlation
responses are computed efficiently in a dense manner.

4.2.2 Circular Spatial Pyramid Pooling

To encode the feature responses on the self-correlation sur-
face, we propose a circular spatial pyramid pooling (C-SPP)
scheme, which pools the responses within each hierarchical
spatial bin, similar to spatial pyramid pooling (SPP) [25],
[61], [62] but in a circular configuration. Note that many
existing descriptors also adopt a circular pooling scheme,
which brings greater robustness because of its higher pixel
density near the central pixel [12], [27], [34]. We further
encode more structure information with a C-SPP.

The circular pyramidal bins SB;(u) are defined from log-
polar circular bins B;, where u indexes all pyramidal levels
s € {1,...,5} and all bins in each level s as in Fig. 4. The
circular pyramidal bin at the top of pyramid, ie., s = 1,
encompasses all of the bins ;. The second level, i.e., s = 2,
is defined by dividing B; into quadrants. For lower pyramid
levels, i.e., s > 2, the circular pyramidal bins are defined
differently according to whether s is odd or even. For an
odd s, the bins are defined by dividing bins in the upper
level into two parts along the radius. For an even s, they are
defined by dividing bins in the upper level into two parts
with respect to the angle. The set of all circular pyramidal
bins is denoted as SB; = |J,, SBi(u) for u € {1,..., Nsg},
where the number of circular spatial pyramid bins is defmed
aSNSB—ZS 22° + 1.

As illustrated in Fig. 3(c), the feature responses are finally
max-pooled on the circular pyramidal bins SB;(u) of each
self-correlation surface C(7; k, j), yielding the following fea-
ture response:

max {C(rix, j)} 4)

i, k(W) =
g’k() JESB;(u)

This max-pooling is repeated for all k and wu, yielding
accumulated correlation responses g;>*(l) = Uy, uy i,k ()
where [ indexes over all £ and u.

Interestingly, LSS [27] also uses a max pooling strategy to
mitigate the effects of non-rigid image deformation. How-
ever, the max pooling in the single-scale self-correlation sur-
face of LSS [27] loses fine-scale matching details as reported
in [10]. By contrast, our descriptor employs circular spatial
pyramid pooling in a multi-scale self-correlation surface
that provides a more discriminative representation of self-
similarities, thus maintaining fine-scale matching details as
well as providing robustness to non-rigid deformations.

4.2.3 Non-linear Mapping and Normalization

The feature responses are passed through a non-linear map-
ping and a normalization to mitigate the effects of outliers.

Hx W x KMZ o HxWxKNg
ssc % £E £
. O zZ= 4
descriptor: J
Hxle H><W><4M; HxWxKM; o H><W><2TM; _:3,H><W><M2R
_O
B0 <8 .. 28
> —_—
- J
image
g Hx W x (K+Ng, M3 o HxWx(KNGINg
DSC % 58 £
. O Z= 2
descriptor: &

Fig. 6. Visualization of the SSC and DSC descriptors. Our architecture
consists of a hierarchical self-correlational layer, circular spatial pyramid
pooling layer, non-linear gating layer, and normalization layer.

With accumulated correlation responses ¢i°°(l), the SSC

descriptor D§*¢ = | J,d5*°(1) is computed for ! € {1, ..., L*°}
through a non-linear mapping:
i (1) = exp(=(1 = |g7>* (D)) /o), ®)

where o, is the Gaussian kernel bandwidth. The features
obtained from the SSC descriptor are of size L%¢ = K x
Nsp. Finally, d3*°(1) for each pixel i is normalized with an
L-2 norm for all [.

4.3 Efficient Computation for Dense Description

The most time-consuming part of SSC is in constructing self-
correlation surfaces C(r; x,j) for k and j, where K x M%
computations of (3) are needed for each pixel i. Straight-
forward computation of a weighted summation using w in
(3) would require considerable processing with a compu-
tational complexity of O(IMzKM?3), where I = H x W
represents the size of an image (height 4 and width W).
To expedite processing, we pre-compute the self-correlation
surfaces within a larger local support window, accelerated
by utilizing fast edge-aware filtering [59], [60].

First of all, we compute C(r; , j) efficiently by rearrang-
ing all sampling patterns (7; x, j) into reference-biased pairs
(1,h) = (4,947 — 7). Similar to DASC [10], C(, h) can be

expressed in an approximate form' as

Z wiir (fir — GZ)(fh’ - )
\/Zwll 7! _Gl)

where G?i = o wiyfy and G}L = Zi,,h/ wj i+ fnr. For faster
computation, it can be expressed as follows [10]:

_ b= Gi -G
VG -

2. \/ng _
where G, Do e Wi ' fir frry 2'2 = Y. wiif?, and
he = Z/h/‘*’m’fh/

C(i,h) can be efficiently computed
using any form of fast edge-aware filter [59], [60] with a
complexity of O(IKM%). C(r,j) is then simply obtained
from C(i, h) by re-indexing sampling patterns [10].

, (6)

Gi)”

E wi,i’(fh' -

i’ h!

@)

1. As shown in [10], there exists a marginal performance difference
between the asymmetric self-correlation measure in (7) and original one
in (3).
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Fig. 7. Visualization of average pooling in DSC. The hierarchical self-
correlation surfaces are sequentially aggregated using average pooling
from the bottom to the top of the circular pyramidal point set.

Though we remove the computational dependency on
patch size Mz, K x M?% computations of (7) are still needed
to obtain the self-correlation surfaces, where many sampling
pair computations for ¢ and h are repeated with respect to
i — h. To avoid such redundancy, we first compute a self-
correlation surface C(i, h) for h € R} with a doubled local
support window R} of size 2x My . A doubled local support
window is used because (7) is computed with patch Fj,
and the minimum support window size for R} to cover
all samples within R; is 2 x Mg as shown in Fig. 5(b).
After the self-correlation surface for R} is computed once
over the image domain, C(r, j) can be extracted through an
index mapping process, where the indexes for R;_,, , are
estimated from R}. With this strategy, the computational
complexity of constructing self-correlation surfaces becomes
O(I4M3), which is smaller than O(IK M%) as 4 < K.

4.4 DSC: Deep Self-Correlation

So far, we have discussed how to build the self-correlation
surface on a single level. In this section, we extend this
idea by encoding self-similar structures at multiple lev-
els. DSC is defined similarly to SSC, except that average
pooling is executed before C-SPP (see Fig. 6). With self-
correlation surfaces, we perform the average pooling on
circular pyramidal point sets. In comparison to the self-
correlations just from a single patch, the spatial aggregation
of self-correlation responses is clearly more robust, and it
requires only marginal computational overhead over SSC.
The strength of such a hierarchical aggregation has also been
shown in [49].

Specifically, to build the hierarchical self-correlation sur-
face through average pooling, we first define the circular
pyramidal point sets SP;(v) from log-polar circular point
sets P;, where v indexes all pyramidal levels ¢t € {1,...,T}
and all points in each level ¢. In the average pooling, the
circular pyramidal bins used in C-SPP are re-used such
that SP;(v) = {jlj € Pi,j € SBi(w)}, thus T = S. As
shown in Fig. 7, deep self-correlation surfaces are defined
by aggregating C(r; k., j) for all r; ;, patches determined on
each SP;(v) such that

2

C(Ua.j) = C(T’L',khj)/N’U? (8)
ri,k€ESP;(v)

which is defined for all v, and N, is the number of r;
patches within SP;(v). The hierarchical self-correlation sur-
faces are sequentially aggregated using average pooling
from the bottom to the top of the circular pyramidal point

Algorithm 1: Deep Self-Correlation (DSC) Descriptor

Input: image f;, random samples r; j,

Output: DSC descriptor Dgs¢

Parameters: number of circular pyramidal bins (points) Nsz(Nsp)

1 : Compute C(i, h) for a doubled support window R} by using (7).

2 : Compute C(r; 1, j) from € (i, h) according to the index mapping.
forv=1: Nsp do

/+ Hierarchical Aggregation using Average Pooling x/

3: Determine a circular pyramidal point SP;(v).
4: Compute C(v, j) by using average pooling
for SP;(v) on C(7; k, j)-
end for

foru=1: Ngp do
/+ Hierarchical Spatial Aggregation using C-SPP x/

5: Determine a circular pyramidal bin SB; (u).
6: Compute g; 1, (u) and g;,,, (u) by using C-SPP
on each SB;(u) from C(r; 1, j) and C(v, j), respectively.
end for

7 : Build hierarchical self-correlation responses g&5¢(l) from
93,k (u) and g; o (w).

8 : Compute a DSC descriptor DIs¢ = | J,dd5¢(1),
followed by L-2 normalization.

set. After computing hierarchical self-correlational aggre-
gations, DSC employs C-SPP as well as non-linear and
normalization layers, similar to SSC as presented in Sec. 4.2.
A hierarchical self-correlation response g; ,,(u) is computed
using C-SPP as

{C(v,4)} ©)

max

i (u) = JESB, (u)

An accumulated self-correlation response is then built
from g; .(u) in (4) and from g, ,,(u) in (9) such that g&*¢(l) =
Uk v,uy 19i.%(w), gi,0(w)} where I indexes over all k, v, and
u. Our DSC descriptor D¢ = | J;d$*°(l) is then built from
g%¢(1) through a non-linear gating layer as in (5) for [ €
{1,..., L%} with L%¢ = (K + Nsp)Nsp. Finally, d$*°(1)

for each pixel 7 is normalized with an L-2 norm for all /.

4.5 Geometry-invariant DSC

It is known that LSS-based descriptors [10], [24], [27], [63]
provide geometric invariance to some extent thanks to the
log-polar binning of a self-correlation surface. However,
under more significant geometric variations, existing LSS-
based descriptors including DSC do not provide satisfactory
performance without an explicit module to consider geo-
metric variations. To overcome this issue, we propose the
geometry-invariant DSC (GI-DSC) that explicitly addresses
scale and/or rotation deformations between cross-modal
images. The underlying assumption is that geometric defor-
mation fields across cross-modal images can be locally well
approximated by a similarity transformation (i.e., transla-
tion, rotation, and uniform scale transformation).

4.5.1 Scale-Invariant Self-Correlations

An explicit scale estimation technique using a scale-space
of conventional feature detectors such as SIFT [11] is sensi-
tive to cross-modal deformation as exemplified in [28]. We
observe that the maximal self-correlation of each sampling
pattern across multiple scales remains consistent with re-
spect to image scale.

Specifically, to compute a multi-scale self-correlation sur-
face, we first build the Gaussian image pyramid f/" =
fi % om for m = {1,..., M}, where g,, is the m-th Gaussian
kernel and M is the number of pyramid levels. For each
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Algorithm 2: Geometry-Invariant DSC (GI-DSC) Descriptor

-3 ; X 30 30,
Input: image f;, rando.m sarnpilssd :cl’k SEK ~—Ep ol || & ] ——Exp. 0/1
Output: GI-DSC descriptor D$ g 25 ~—Exp. 012 g 25 ~—Exp. 012
Parameters: number of circular pyramidal bins (points) Nsp(Nsp) g —o=lllum. 12|| § ~e—1llum. 1/2
/* Scale-Invariance x/ B 201 —e=lllum. /3 B2 —e=lllum. /3
1 : Compute the Gaussian image pyramid f* = f; * om. % ) %
2 : Compute C"™ (4, h) for fI™ using (10). g 15 g 15
3 : Estimate C®'(4, h) using a max-pooling as in (11). £ s
. . — 10 — 10
/* Rotation-Invariance */ s » S
4 : Construct lyis; (4, 0, ) with C51(i, h) using (12). g uog
5 : Estimate the orientation 6, for each pixel i from lpis (4, 0a)- 5 7 9 11 13 15 17 19 1x4 2x8 3x12 4x16 5x20 6x24 7x28 8x32
6 : Filter out the orientation #; to provide smooth geometric fields. (a) (b)
7 : Transform r; j,, SB;, and SP; according to 6;. 0 =
8 : Through Steg}j—ssc in Algogljgzrcl 1, compute a GI-DSC descriptor g ~Epo1] ¢ T
such that D% =, d% @). 8 ——Exp. 02 30] ~e—Exp. 012
B e —=llum. /2| | & ¢ =e=lllum. 1/2
3 15 ——llum. 113]] g% ——Illum. /3
HxWx1 Hx W 4M2 Hx W x4M2 LR 1 3x
Q Q
510 €15
c(i J) £ o=
s 510
% "5 s
'é% %@, 0 8 16 24 32 40 48 56 64 0 1 2 3 4
. %, i
K (© (d)

Fig. 8. Visualization of geometry-invariance in GI-DSC. To provide scale
invariance, our approach measures multi-scale self-correlation surfaces,
and fuses them by max-pooling. Moreover, canonical orientation fields
for each pixel are estimated to provide orientation invariance.

image pyramid level f;™, we measure the asymmetric self-
correlation C™ (i, h), similar to (7), such that

Eniy = Gt
\/ bm_ (G2 \/ (G2

where G, Gy™, Gy, G", and G});" are measured
for each image pyramid level f/". The scale-invariant self-

correlation is then computed by max-pooling as follows:

, (10)

Csi(i, h) = maxM}{ém(i, h)}. (11)

mefln,

4.5.2 Orientation Estimation for Rotation Invariance

Similar to scale invariance, rotation invariance also can
be achieved by using images under multiple orientations.
However, such a technique would dramatically increase
computational complexity, a function of the product be-
tween the number of scales and rotations. Furthermore,
our initial experiments indicated that the localization ability
of the descriptor around object boundaries is degraded
substantially. Fortunately, unlike scale, the orientation field
on each pixel can be easily determined from the maximum
among orientation bins weighted by (pre-computed) self-
correlations. By transforming the randomly sampled points,
the circular pyramidal bins, and the circular pyramidal
points according to the estimated orientation, our descriptor
can provide rotation invariance on each pixel with only
marginal computational overhead.

Specifically, an orientation 6; of each pixel i is found by
constructing a histogram with angles Z (i — h) for h € R
weighted with self-correlations C(i, h) such that

lhist(iyea) = Z é(i,h)/Na,

heH;(a)

(12)

Fig. 9. Component analysis of DSC on the Middlebury benchmark [30]
for varying parameter values, such as (a) support window size My, (b)
number of log-polar circular point N, x N, (¢) number of random sam-
ples K, and (d) level of circular spatial pyramid S. In each experiment,
all other parameters are fixed to the initial values.

where H;(a) = {hlh € R},0,—1 < Z(i—h) < 0,} and a
quantized angle 6, for a € {1,..., Ny}, and N, is the number
of samples in H;(a). We then simply choose the main
orientation for each pixel corresponding to the most heavily-
weighted bin in the histogram, i.e., 0; = argmax_ Inist (7, 6a)-
Moreover, based on the observation that the geometric
deformation fields tend to vary smoothly except at object
boundaries [24], [64], the estimated orientation #; for each
pixel ¢ is propagated to neighboring pixels using a fast
(color-guided) global image filter [65] to correct erroneous
rotation fields.

To provide rotation invariance to the DSC descriptor in
Sec. 4.4, we transform randomly sampled points 7; j, the
circular pyramidal bins SB; and the circular pyramidal
points SP; according to estimated rotation 6¢;, and then
build the DSC descriptor similarly to Fig. 6. By incorporat-
ing both scale- and rotation-invariance from Sec. 4.5.1 and
Sec. 4.5.2 within the DSC descriptor, we obtain the GI-DSC
descriptor with geometric invariance as well as cross-modal
robustness. Fig. 8 illustrates this geometry invariance in the
GI-DSC descriptor.

5 EXPERIMENTAL RESULTS AND DISCUSSION
5.1 Experimental Settings

In our experiments, DSC and GI-DSC are implemented
with the following fixed parameter settings for all datasets:
{Mr,Mr,0.,K,S, T} = {9,5,0.5,32,3,3}, {N,, Ny} =
{4,16}, and { Ny, M} = {32,4}. The dimension of SSC and
DSC (or GI-DSC) are fixed to 416 and 585, respectively. We
choose the guided filter (GF) for edge-aware filtering in (7),
with a smoothness parameter of ¢ = 0.03%. We implement
the DSC and GI-DSC descriptors in Matlab/C++ on an Intel
Core i7-3770 CPU at 3.40 GHz.

In the following, our DSC and GI-DSC descriptors are
compared to other state-of-the-art handcrafted descriptors
(SIFT [11], DAISY [12], BRIEF [34], LIOP [38], DaLlI [31],
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Fig. 11. Average bad-pixel error rate on the Middlebury benchmark [30]
with illumination and exposure variations. Optimization was done by GC
in (a), (b), and by WTA in (c), (d). SSC and DSC descriptors show the
best performance with the lowest error rate.

LSS [27], SegSIFT [57], SegSID [57], DASC [10], and GI-
DASC [28]), recent CNN-based descriptors (MC-CNN [66],
VGG? [16], FCSS [24], MatchNet (MatchN.) [26], Deep Com-
pare (DeepC.) [68], Deep Descriptor (DeepD.) [21], Learned
Invariant Feature Transform (LIFT) [22], L2-Net [23], and
Quadruplet Network (Q-Net) [401%), and area-based ap-
proaches using handcrafted similarity measures (ANCC [47]
and RSNCC [9]). Furthermore, to evaluate the performance
gain with a hierarchical structure, we compared SSC and
DSC. Optimization for all descriptors and similarity mea-
sures was done using WTA and SIFT flow (SF) with hierar-
chical dual-layer belief propagation [13], for which the code
is publicly available.

5.2 Ablation Study

The performance of DSC is exhibited in Fig. 9 for vary-
ing parameter values, including support window size Mg,

2.In ‘VGG’, ImageNet pretrained VGG-Net [16] from the bottom
convl to the conv3-4 layer were used with Lo normalization [67].

3.Since MatchN. [26], DeepC. [68], DeepD. [21], LIFT [22], L2-
Net [23], and Q-Net [40] were developed for sparse correspondence,
sparse descriptors were first built by forward-propagating images
through networks and then upsampled.

(e) LSS [27] (f) DASC [10] (g)‘MC.ICi\WIN [66]

(h) DSC
Fig. 10. Comparison of disparity estimations for Moebius and Dolls image pairs on the Middlebury benchmark [30] across illumination combination
‘1/3’ and exposure combination ‘0/2’, respectively. Compared to other methods, DSC estimates more accurate and edge-preserved disparity maps.

(a) image 1 (b) image 2

(e) LSS [27] (f) DASC [10]  (g) DeepD. [21] (h) DeepC. [68]

(i) FCSS [24]

(j) SsC (k) DSC (1) GI-DSC
Fig. 12. Dense correspondence evaluations for RGB-NIR image pairs

on cross-modal and cross-spectral benchmark [10]. The source images
were warped to the target images using correspondences.

number of log-polar circular points N, x Ng, number
of random samples K, and levels of the circular spatial
pyramid S. Fig. 9(c) and (d) demonstrate the effectiveness
of self-correlation surfaces and hierarchical structures. For
a quantitative analysis, we measured the average bad-
pixel error rate on the Middlebury benchmark [30]. With a
larger support window Mg, the matching quality improves
rapidly until about 9x9. N, x Ny influences the performance
of circular pooling, which is found to plateau at 4 x 16.
Using a larger number of random samples K yields better
performance since DSC encodes more information. The lev-
els of circular spatial pyramid S also affect the amount of
encoding. Based on these experiments, we set K = 32 and
S = 3 in consideration of efficiency and robustness.

5.3 Middlebury Stereo Benchmark

We first evaluated SSC and DSC on the Middlebury stereo
benchmark [30], which contains illumination and exposure
variations. In the experiments, the illumination (exposure)
combination ‘1/3" indicates that two images were captured
under the 1% and 3"¢ illumination (exposure) conditions.
For quantitative evaluation, we measured the bad-pixel
error rate in non-occluded areas of disparity maps [30].

Fig. 10 shows the disparity maps estimated under severe
illumination and exposure variations with winner-takes-all
(WTA) optimization. Fig. 11 displays the average bad-pixel
error rates of disparity maps obtained under illumination
or exposure variations, with graph-cut (GC) [69] and WTA



SUBMISSION TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018 9

TABLE 1
Average error rates on cross-modal and cross-spectral benchmark [10]. L2-Net' denotes results of L2-Net [23] with densely sampled windows.

WTA optimization

SF optimization [13]

RGB- flash- diff. blur- Avera RGB- flash- diff. blur- Avera

NIR noflash expo. sharp VErage  NIR noflash expo. sharp verage
ANCC [47] 23.21 20.42 25.19 26.14 23.74 18.45 14.14 11.96 19.24 15.95
RSNCC [9] 27.51 25.12 18.21 2791 24.69 13.41 15.87 9.15 18.21 14.16
SIFT [11] 24.11 18.72 19.42 27.18 22.36 18.51 11.06 14.87 20.78 16.31
DAISY [12] 27.61 26.30 20.72 27.41 25.51 20.42 10.84 12.71 2291 16.72
BRIEF [34] 29.14 18.29 17.13 26.43 22.75 17.54 9.21 9.54 19.72 14.00
LSS [27] 27.82 19.18 18.21 26.14 22.84 16.14 11.88 9.11 18.51 13.91
LIOP [38] 24.42 16.42 14.22 20.42 18.87 15.32 11.42 10.22 17.12 13.52
DASC [10] 14.51 13.24 10.32 16.42 13.62 13.42 7.11 7.21 11.21 9.74
MatchN. [26] 19.72 16.54 20.81 27.14 21.05 17.51 10.82 11.84 12.34 13.13
DeepC. [68] 20.71 20.78 16.84 21.84 20.04 17.11 14.21 10.87 11.98 13.54
DeepD. [21] 16.72 17.81 12.72 20.71 16.99 14.87 10.88 12.87 13.93 13.14
Q-Net [40] 10.11 16.75 12.81 22.95 15.66 10.40 17.42 13.92 12.38 13.53
LIFT [22] 14.82 14.32 10.11 17.84 14.27 12.88 10.28 9.77 10.54 10.87
L2-Net [23] 13.79 13.16 9.92 19.11 13.99 11.92 15.22 11.20 11.69 12.51
L2-Net' [23] 12.61 14.22 10.22 20.54 14.40 10.51 14.66 10.90 12.17 12.06
FCSS [24] 11.87 9.84 7.99 17.64 11.84 12.10 6.28 6.11 10.84 8.83
SSC 10.12 10.12 8.22 14.22 10.67 9.12 6.18 5.22 9.12 7.41
DSC 8.12 8.22 6.72 13.28 9.09 7.62 5.12 4.72 8.01 6.37
GI-DSC 9.30 7.92 6.86 12.92 9.25 7.12 4.75 4.42 7.06 5.84

(d) DAISY [12]

(c) SIFT [11]

(a) image 1

(b) image 2

(e) LSS [27]

(i) FCSS [24] (j) SSC (k) DSC (1) GI-DSC

Fig. 13. Dense correspondence evaluations for flash-noflash image
pairs on cross-modal and cross-spectral benchmark [10]. The source
images were warped to the target images using correspondences.

(a) image 1 (b) image 2 (c) SIFT [11] (d) DAISY [12]

(i) FCSS [24]

(j) SsC (k) DSC () GI-DSC
Fig. 14. Dense correspondence evaluations for different exposure image

pairs on cross-modal and cross-spectral benchmark [10]. The source
images were warped to the target images using correspondences.

optimization. Note that since the geometric variation across
stereo images exists only on translation field, GI-DSC was
not evaluated in this experiment. Area-based approaches

() SIFT[11]  (d) DAISY [12]

(b) image 2

(f) DASC [10]  (g) DeepD. [21] (h) DeepC. [68]

(i) FCSS [24] (j) SsC (k) DSC (1) GI-DSC
Fig. 15. Dense correspondence evaluations for blurred-shapre image

pairs on cross-modal and cross-spectral benchmark [10]. The source
images were warped to the target images using correspondences.

(ANCC [47] and RSNCC [9]) are sensitive to severe ra-
diometric variations, especially when local variations occur
frequently. Feature descriptor-based methods (SIFT [11],
DAISY [12], BRIEF [34], LSS [27], and DASC [10]) perform
better than the area-based approaches, but they also provide
limited performance. Although the state-of-the-art CNN-
based descriptor (MC-CNN [66]) has shown good results, it
exhibits limited performance in cases of severe radiometric
variation. Note that since other state-of-the-art stereo match-
ing methods directly estimate disparity maps in an end-to-
end manner, they were not evaluated in this experiment.
Our DSC achieves the best results both quantitatively and
qualitatively. Compared to SSC, the performance of DSC
is highly improved, where the performance benefits of the
hierarchical structure are apparent.

5.4 Cross-modal and Cross-spectral Benchmark

We evaluated DSC and GI-DSC on a cross-modal and cross-
spectral benchmark [10] containing various kinds of image
pairs, namely RGB-NIR, flash-noflash, different exposures,
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(a) image 1

(b)image2 () DAISY [12]  (d) BRIEF [34]

(e) LSS [27] () DaLI[31]  (g) FCSS [24] (g) DSC

Fig. 16. Dense correspondence evaluations for images with different illumination conditions and non-rigid image deformations [31]. The source

images were warped to the target images using correspondences.

TABLE 2
Average error rates on the DalLl benchmark [31].

deform./

Methods deform. illum. . Average
illum.
DAISY [12] 43.98 42.72 43.42 43.37
BRIEF [34] 41.51 37.14 41.35 40.00
LSS [27] 40.81 39.54 40.11 40.12
LIOP [38] 28.72 31.72 30.21 30.22
Dall [31] 27.12 27.31 27.99 2747
DASC [10] 26.21 24.83 27.51 26.18
VGG [16] 25.72 23.41 22.51 23.88
LIFT [22] 27.42 27.11 29.28 27.94
L2-Net [23] 26.34 25.74 26.84 26.31
FCSS [24] 22.18 24.72 19.72 22.21
SSC 23.42 22.21 2417 23.27
DSC 20.14 20.72 21.87 20.91
GI-DSC 18.47 16.25 18.24 17.65

and blurred-sharp. Sparse ground-truths for those images
are used for error measurement as done in [10].

Fig. 12, Fig. 13, Fig. 14, and Fig. 15 provide a qualitative
comparison of the DSC and GI-DSC descriptors to other
state-of-the-art approaches for RGB-NIR, flash-noflash, dif-
ferent exposures, and blurred-sharp images, respectively.
As already described in the literature [9], gradient-based
approaches such as SIFT [11] and DAISY [12] have shown
limited performance for RGB-NIR pairs where gradient re-
versals and inversions frequently appear. BRIEF [34] cannot
deal with noisy regions and modality-based appearance
differences since it is formulated on pixel differences only.
Unlike these approaches, LSS [27] and DASC [10] con-
sider local self-similarities, but LSS suffers from limited
discriminative power. DASC also exhibits limited perfor-
mance due to the sensitivity of patch-wise receptive field
pooling. State-of-the-art CNN-based descriptors such as
MatchN. [26], DeepC. [68], DeepD. [21], LIFT [22], L2-
Net [23], and FCSS [24], pretrained on non cross-modal
image pairs, cannot provide reliable correspondence esti-
mation performance on cross-modal matching. Even though
those methods have shown high robustness to photometric
variations, they provide limited precision in localization.
Moreover, large-scale training datasets are lacking for learn-
ing those descriptors. Q-Net [40] trained on the RGB-NIR
dataset [1] has shown limited generalization ability to the
appearance variations of various modalities such as flash-

TABLE 3
Average error rates on the tri-modal human benchmark [32].

RGB-depth RGB-thermal  depth-thermal

LTA ToU TILTA ToU [ITA IoU
DAISY [12] 4551 041 3631 044 5321 052
BRIEF [34] 4622 046 4811 041 5722 053
LSS [27] 4927 052 4938 042 51.87 042
LIOP [38] 4175 037 4827 036 5078 0.39
DalLl [31] 4099 039 4872 043 5395 050
DASC [10] 3672 036 3827 039 4372 041
VGG [16] 3316 039 3811 042 4672 038
LIFT [22] 3872 047 4351 049 50.84 053
L2-Net [23] 3627 041 3884 038 4254 047
FCSS [24] 3082 031 2971 030 39.78 0.34
SSC 3011 029 3087 031 4281 0.36
DSC 26.19 024 2938 0.27 36.22  0.27
GI-DSC 2263 019 2742 024 30.82 0.21

noflash, different exposures, and blurred-sharp. Compared
to those methods, DSC displays better correspondence esti-
mation. We also performed a quantitative evaluation with
results listed in Table 1, which also clearly demonstrates
the effectiveness of DSC. Note that the geometric variation
across images provided from the cross-modal and cross-
spectral benchmark [10] is not substantial, and thus it is
relatively difficult to show the effectiveness of GI-DSC in
terms of handling the geometry variation. Nevertheless,
even in the benchmark, GI-DSC demonstrates an improved
matching performance over DSC by considering geometry-
invariant receptive fields.

5.5 DalLl Benchmark

We also evaluated the DSC and GI-DSC descriptors on a
publicly available dataset featuring challenging non-rigid
deformations and severe illumination changes [31]. Fig. 16
presents dense correspondence estimates for this bench-
mark [31]. A quantitative evaluation is given in Table 2
using ground-truth feature points sparsely extracted for
each image, although DSC and GI-DSC are designed to
estimate dense correspondences. As expected, conventional
gradient-based and intensity comparison-based feature de-
scriptors, including SIFT [11], DAISY [12], and BRIEF [34],
are relatively less effective on such images. LSS [27] and
DASC [10] exhibit relatively high performance for illumina-
tion changes, but perform less well on non-rigid geometric
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(a) Image pairs (b) SIFT [11] (c) DASC [10] (d) LSS [27]

(e) VGG [16] (f) FCSS [24] g) DSC (h) GI-DSC

Fig. 17. Comparison of qualitative evaluation on RGB-depth human benchmark [32]. The results consist of warped color images and warped

ground-truth human annotations.

(a) Image pairs

(b) SIFT () DASC[10]  (d) LSS [27]

(e) LIFT [22] (f ) FCSS [24] (g ) DSC (h) GI-DSC

Fig. 18. Comparison of qualitative evaluation on RGB-thermal human benchmark [32]. The results consist of warped color images and warped

ground-truth human annotations.

deformations. LIOP [38] provides robustness to radiomet-
ric variations, but is sensitive to non-rigid deformations.
Although Dall [31] provides robust correspondences, it
requires considerable computation for dense matching. DSC
offers greater discriminative power as well as more robust-
ness to non-rigid deformations in comparison to the state-
of-the-art cross-modality descriptors. State-of-the-art deep
CNN-based methods such as FCSS [24] also show strong
performance but require tremendous training time and a
large number of training samples. Furthermore, by using ex-
plicit geometric estimation modules, GI-DSC present state-
of-the-art performance for non-rigid deformations.

5.6 Tri-modal Human Benchmark

We additionally evaluated our descriptor on the tri-modal
human body segmentation dataset [32] which includes RGB-
Depth-FIR pairs. The dataset contains 11,537 frames divided
into three indoor scenes and among them, 5,724 frames with
human body annotations. To quantitatively measure the

estimated correspondence quality, we use the label transfer
accuracy (LTA) [13], [28] and intersection over union (IoU)
metrics [14], [24] with manually built ground-truth object
annotation maps, a practical alternative when no ground-
truth correspondence is available. Note that different from
LTA, IoU isolates the matching quality for foreground ob-
jects, separate from irrelevant background pixels.

Fig. 17 and Fig. 18 display qualitative comparisons for
RGB-Depth and RGB-FIR pairs, respectively. Table 3 present
a quantitative evaluation in terms of LTA and IoU. In
comparison to the experiments of previous sections, this
experiment uses RGB-Depth, RGB-FIR, and Depth-FIR pairs
with more severe cross-modal variations. Similar to previ-
ous experiments, conventional handcrafted descriptors such
as DASC [10] show limited performance. Although state-of-
the-art CNN-based methods produce improvements, they
cannot deal with non-rigid deformations or severe appear-
ance variations across cross-modal images.
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(a) Image pairs (b) DAISY

ground-truth annotations.
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Fig. 19. Comparison of quantitative evaluation on DIML cross-modal

benchmark [70]. Each result represents the LTA for geometric (x-axis)
and photometric (y-axis) variations, respectively.

5.7 DIML Cross-modal Benchmark

We further evaluated the DSC and GI-DSC descriptors on
the DIML cross-modal benchmark [28] with both photomet-

(c) Seg-SIFT [57] (d) Seg-SID [57]  (e) DASC [10] () GI-DASC [28]

b T £

(8) DSC

(h) GI-DSC
Fig. 20. Comparison of qualitative evaluation on DIML cross-modal benchmark [70]. The results consist of warped color images and warped

TABLE 4

Average error rates on the DIML cross-modal benchmark [70].

photometry geometry all

LTA IoU LTA IoU LTA TIoU
DAISY [12] 3642 042 4842 051 4242 047
BRIEF [34] 4051 050 4721 054 4386 052
LSS [27] 38.51 042 4780 043 4316 043
LIOP [38] 26.71 036 52.03 041 37.37  0.39
DalLl [31] 3471 034 4982 039 4227 037
DASC [10] 20.41 0.31 30.81 033 2561 0.32
GI-DASC [24] 2192 032 21.84 026 2188 0.29
VGG [16] 2207 029 4111 027 3159 028
LIFT [22] 23.11 030 42.02 0.31 3257 031
L2-Net [23] 2675 035 3874 045 3275 040
FCSS [24] 18.72 0.27 31.80 0.24 25.26 0.26
SSC 1978 029 3171 028 2575 0.29
DSC 16.72 0.24 26.11 0.25 2142 0.25
GI-DSC 14.70  0.19 16.27  0.20 1549  0.20

ric and geometric variations. Ten geometry image sets were
captured with geometric variations that arise from a com-
bination of viewpoint, scale, and rotation differences, and
each image set consists of images taken under five different
photometric variation pairs including illumination, expo-
sure, flash-noflash, blur, and noise. The DIML cross-modal
benchmark thus consists of 100 images of size 1200 x 800.
For quantitative evaluation, we used LTA and IoU, similar
to Sec. 5.6. We follow the experimental configuration in [28],
where for an image from the reference geometry image
set, we estimate visual correspondence maps with images
from other geometry image sets, and then compute LTA.
Furthermore, visual correspondence maps are estimated for
each photometric pair.

Fig. 19 exhibits the LTA for varying photometric and
geometric deformations on the DIML cross-modal bench-
mark [28]. Table 4 and Fig. 20 presents quantitative and
qualitative evaluation results, respectively. As expected,
conventional gradient-based and intensity comparison-
based feature descriptors, including SIFT [11], DAISY [12],
and BRIEF [34], do not provide weaker correspondence
performance. LSS [27] and DASC [10] exhibit relatively high
performance for illumination changes, but are limited on
non-rigid deformations. LIOP [38] provides robustness to
radiometric variations, but is sensitive to non-rigid deforma-
tions. Although DalLl [31] provides robust correspondences,
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Fig. 21. Computation speed of DSC and GI-DSC descriptors and other
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it requires considerable computation for dense matching.
State-of-the-art CNN-based descriptors such as LIFT [22]
and FCSS [24] cannot deal with photometric and geometric
variations simultaneously, resulting in limited performance.
DSC offers greater discriminative power as well as more
robustness to non-rigid deformation in comparison to the
state-of-the-art cross-modality descriptors, but it remains
vulnerable to severe geometric variations. Unlike these, GI-
DSC shows robustness to both photometric and geometric
variations.

5.8 Computational Speed

In Fig. 21, we compare the computation speed of DSC and
GI-DSC to the state-of-the-art descriptors. Although deep
CNN-based descriptors such as LIFT [22] and FCSS [24] are
efficient at testing time compared to handcrafted descriptors
such as DaLl [31], SIFT [11], and LSS [27], they entail a large
computational burden at training time and require a large
number of training samples. Compared to the brute-force
implementation of DSC, the efficient implementation of DSC
greatly reduces computation time. Moreover, compared to
DSC, GI-DSC needs only marginal additional computation
while providing high geometric invariance. Even though
the DSC and GI-DSC descriptors need more computation
compared to some previous dense descriptors, it provides
significantly improved matching performance as described
previously and is training-free.

6 CONCLUSION

The DSC and GI-DSC descriptors were proposed for estab-
lishing dense correspondences between images taken under
different imaging modalities. Their high performance in
comparison to state-of-the-art descriptors can be attributed
to greater robustness to non-rigid deformations because
of their effective pooling scheme, and more importantly
their heightened discriminative power from a more com-
prehensive representation of self-similar structure and their
formulation in a hierarchical manner. Over an extensive
set of experiments that cover a broad range of cross-modal
differences, DSC and GI-DSC were validated by their higher
performance in comparison to existing handcrafted and
deep CNN-based descriptors. Thanks to their robustness
to non-rigid deformations and high discriminative power,
DSC and GI-DSC can potentially be used to benefit object
detection and semantic segmentation in future work.
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