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Abstract. We present a novel descriptor, called deep self-correlation
(DSC), designed for establishing dense correspondences between images
taken under different imaging modalities, such as different spectral ranges
or lighting conditions. Motivated by local self-similarity (LSS), we formu-
late a novel descriptor by leveraging LSS in a deep architecture, leading
to better discriminative power and greater robustness to non-rigid image
deformations than state-of-the-art descriptors. The DSC first computes
self-correlation surfaces over a local support window for randomly sam-
pled patches, and then builds hierarchical self-correlation surfaces by
performing an average pooling within a deep architecture. Finally, the
feature responses on the self-correlation surfaces are encoded through a
spatial pyramid pooling in a circular configuration. In contrast to convo-
lutional neural networks (CNNs) based descriptors, the DSC is training-
free, is robust to cross-modal imaging, and can be densely computed
in an efficient manner that significantly reduces computational redun-
dancy. The state-of-the-art performance of DSC on challenging cases of
cross-modal image pairs is demonstrated through extensive experiments.

Keywords: Cross-modal correspondence · Deep architecture · Self-
correlation · Local self-similarity · Non-rigid deformation

1 Introduction

In many computer vision and computational photography applications, images
captured under different imaging modalities are used to supplement the data
provided in color images. Typical examples of other imaging modalities include
near-infrared [1–3] and dark flash [4] photography. More broadly, photos taken
under different imaging conditions, such as different exposure settings [5], blur
levels [6,7], and illumination [8], can also be considered as cross-modal [9,10].

Establishing dense correspondences between cross-modal image pairs is essen-
tial for combining their disparate information. Although powerful global opti-
mizers may help to improve the accuracy of correspondence estimation to some
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Fig. 1. Examples of matching cost profiles, computed with different descriptors along
the scan lines of A, B, and C for image pairs under severe non-rigid deformations and
illumination changes. Unlike other descriptors, DSC yields reliable global minima.

extent [11,12], they face inherent limitations without the help of suitable match-
ing descriptors [13]. The most popular local descriptor is scale invariant feature
transform (SIFT) [14], which provides relatively good matching performance
when there are small photometric variations. However, conventional descriptors
such as SIFT often fail to capture reliable matching evidence in cross-modal
image pairs due to their different visual properties [9,10].

Recently, convolutional neural networks (CNNs) based features [15–19] have
emerged as a robust alternative with high discriminative power. However, CNN-
based descriptors cannot satisfactorily deal with severe cross-modality appear-
ance differences, since they use shared convolutional kernels across images which
lead to inconsistent responses similar to conventional descriptors [19,20]. Fur-
thermore, they do not scale well for dense correspondence estimation due to their
high computational complexity. Though recent works [21] propose an efficient
method that extracts dense outputs through the deep CNNs, they do not extract
dense CNN features for all pixels individually. More seriously, their methods are
usually designed to perform a specific task only, e.g., semantic segmentation, not
to provide a general purpose descriptor like ours.

To address the problem of cross-modal appearance changes, feature descrip-
tors have been proposed based on local self-similarity (LSS) [22], which is moti-
vated by the notion that the geometric layout of local internal self-similarities
is relatively insensitive to imaging properties. The state-of-the-art descriptor for
cross-modal dense correspondence, called dense adaptive self-correlation (DASC)
[10], makes use of LSS and has demonstrated high accuracy and speed on cross-
modal image pairs. However, DASC suffers from two significant shortcomings.
One is its limited discriminative power due to a limited set of patch sampling
patterns used for modeling internal self-similarities. In fact, the matching per-
formance of DASC may fall well short of CNN-based descriptors on images that
share the same modality. The other major shortcoming is that the DASC descrip-
tor does not provide the flexibility to deal with non-rigid deformations, which
leads to lower robustness in matching.
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In this paper, we introduce a novel descriptor, called deep self-correlation
(DSC), that overcomes the shortcomings of DASC while providing dense cross-
modal correspondences. This work is motivated by the observation that local
self-similarity can be formulated in a deep architecture to enhance discrimina-
tive power and gain robustness to non-rigid deformations. Unlike the DASC
descriptor that selects patch pairs within a support window and calculates the
self-similarity between them, we compute self-correlation surfaces that more
comprehensively encode the intrinsic structure by calculating the self-similarity
between randomly selected patches and all of the patches within the support
window. These self-correlational responses are aggregated through spatial pyra-
mid pooling in a circular configuration, which yields a representation less sen-
sitive to non-rigid image deformations than the fixed patch selection strategy
used in DASC. To further enhance the discriminative power and robustness, we
build hierarchical self-correlation surfaces resembling a deep architecture used
in CNN, together with nonlinear and normalization layers. For efficient com-
putation of DSC over densely sampled pixels, we calculate the self-correlation
surfaces through fast edge-aware filtering.

DSC resembles a CNN in its deep, multi-layer, and convolutional structure.
In contrast to existing CNN-based descriptors, DSC requires no training data for
learning convolutional kernels, since the convolutions are defined as the local self-
similarity between pairs of image patches, which provides robustness for cross-
modal imaging. Figure 1 illustrates the robustness of DSC for image pairs across
non-rigid deformations and illumination changes. In the experimental results, we
show that the DSC outperforms existing area-based and feature-based descrip-
tors on various benchmarks.

2 Related Work

Feature Descriptors. Conventional gradient-based descriptors, such as SIFT
[14] and DAISY [23], as well as intensity comparison-based binary descriptors,
such as BRIEF [24], have shown limited performance in dense correspondence
estimation between cross-modal image pairs. Besides these handcrafted features,
several attempts have been made using machine learning algorithms to derive
features from large-scale datasets [15,25]. A few of these methods use deep CNNs
[26], which have revolutionized image-level classification, to learn discriminative
descriptors for local patches. For designing explicit feature descriptors based on
a CNN architecture, immediate activations are extracted as the descriptor [15–
19], and have been shown to be effective for this patch-level task. However, even
though CNN-based descriptors encode a discriminative structure with a deep
architecture, they have inherent limitations in cross-modal image correspondence
because they are derived from convolutional layers using shared patches or vol-
umes [19,20]. Furthermore, they cannot in practice provide dense descriptors in
the image domain due to their prohibitively high computational complexity.

To estimate cross-modal correspondences, variants of the SIFT descriptor
have been developed [27], but these gradient-based descriptors maintain an
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(a) (b) (c)

Fig. 2. Illustration of (a) LSS [22] using center-biased dense max pooling, (b) DASC
[10] using patch-wise receptive field pooling, and (c) our DSC. Boxes, formed by solid
and dotted lines, depict source and target patches. DSC incorporates a circular spatial
pyramid pooling on hierarchical self-correlation surfaces.

inherent limitation similar to SIFT in dealing with image gradients that vary dif-
ferently between modalities. For illumination invariant correspondences, Wang
et al. proposed the local intensity order pattern (LIOP) descriptor [28], but severe
radiometric variations may often alter the relative order of pixel intensities.
Simo-Serra et al. proposed the deformation and light invariant (DaLI) descriptor
[29] to provide high resilience to non-rigid image transformations and illumina-
tion changes, but it cannot provide dense descriptors in the image domain due
to its high computational time.

Schechtman and Irani introduced the LSS descriptor [22] for the purpose
of template matching, and achieved impressive results in object detection and
retrieval. By employing LSS, many approaches have tried to solve for cross-
modal correspondences [30–32]. However, none of these approaches scale well to
dense matching in cross-modal images due to low discriminative power and high
complexity. Inspired by LSS, Kim et al. recently proposed the DASC descriptor
to estimate cross-modal dense correspondences [10]. Though it can provide sat-
isfactory performance, it is not able to handle non-rigid deformations and has
limited discriminative power due to its fixed patch pooling scheme.

Area-Based Similarity Measures. A popular measure for registration of
cross-modal medical images is mutual information (MI) [33], based on the
entropy of the joint probability distribution function, but it provides reliable per-
formance only for variations undergoing a global transformation [34]. Although
cross-correlation based methods such as adaptive normalized cross-correlation
(ANCC) [35] produce satisfactory results for locally linear variations, they are
less effective against more substantial modality variations. Robust selective
normalized cross-correlation (RSNCC) [9] was proposed for dense alignment
between cross-modal images, but as an intensity based measure it can still be
sensitive to cross-modal variations. Recently, DeepMatching [36] was proposed
to compute dense correspondences by employing a hierarchical pooling scheme
like CNN, but it is not designed to handle cross-modal matching.
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3 Background

Let us define an image as fi : I → R for pixel i, where I ⊂ N
2 is a discrete

image domain. Given the image fi, a dense descriptor Di : I → R
L with a

feature dimension of L is defined on a local support window Ri of size MR.
Unlike conventional descriptors, relying on common visual properties across

images such as color and gradient, LSS-based descriptors provide robustness to
different imaging modalities since internal self-similarities are preserved across
cross-modal image pairs [10,22]. As shown in Fig. 2(a), the LSS discretizes the
correlation surface on a log-polar grid, generates a set of bins, and then stores
the maximum correlation value of each bin. Formally, it generates an LLSS × 1
feature vector DLSS

i =
⋃

ld
LSS
i (l) for l ∈ {1, ..., LLSS}, with dLSSi (l) computed as

dLSSi (l) = max
j∈Bi(l)

{exp(−S(Fi,Fj)/σc)}, (1)

where log-polar bins are defined as Bi = {j|j ∈ Ri, ρr−1 < |i − j| ≤ ρr, θa−1 <
∠(i − j) ≤ θa} with a log radius ρr for r ∈ {1, · · · , Nρ} and a quantized angle
θa for a ∈ {1, · · · , Nθ} with ρ0 = 0 and θ0 = 0. S(Fi,Fj) is a correlation surface
between a patch Fi and Fj of size MF , computed using the sum of square
differences. Each pair of r and a is associated with a unique index l. Though
LSS provides robustness to modality variations, its significant computation does
not scale well for estimating dense correspondences in cross-modal images.

Inspired by the LSS [22], the DASC [10] encodes the similarity between patch-
wise receptive fields sampled from a log-polar circular point set Pi as shown in
Fig. 2(b). It is defined such that Pi = {j|j ∈ Ri, |i − j| = ρr,∠(i − j) = θa},
which has a higher density of points near a center pixel, similar to DAISY [23].
The DASC is encoded with a set of similarities between patch pairs of sampling
patterns selected from Pi such that DDASC

i =
⋃

ld
DASC
i (l) for l ∈ {1, ..., LDASC}:

dDASC
i (l) = exp(−(1 − |C(Fsi,l

,Fti,l)|)/σc), (2)

where si,l and ti,l are the lth selected sampling pattern from Pi at pixel i. The
patch-wise similarity is computed with an exponential function with a bandwidth
of σc, which has been widely used for robust estimation [37]. C(Fsi,l

,Fti,l) is
computed using an adaptive self-correlation measure. While the DASC descriptor
has shown satisfactory results for cross-modal dense correspondence [10], its
randomized receptive field pooling has limited descriptive power and does not
accommodate non-rigid deformations.

4 The DSC Descriptor

4.1 Motivation and Overview

Inspired by DASC [10], our DSC descriptor also measures an adaptive self-
correlation between two patches. We, however, adopt a different strategy for
selecting patch pairs, and build self-correlation surfaces that more comprehen-
sively encode self-similar structure to improve the discriminative power and the
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Fig. 3. Computation of single self-correlation (SSC) descriptor. (a) A local support
window Ri of size MR with NK random samples. (b) For each random patch, a self-
correlation surface is computed using an adaptive self-correlation measure. (c) A self-
correlation response is then obtained through circular spatial pyramid pooling (C-SPP).
(d) The response from C-SPP is concatenated as 1-D feature vector.

(a) s = 1 (b) s = 2 (c) s = 3 (b) s = 4 (e) s = 5

Fig. 4. Examples of the circular spatial pyramidal bins SBi. The total number of bins
is NSB =

∑NS
s=22

s + 1, where NS represents the pyramid level.

robustness to non-rigid image deformation (Sect. 4.2). Motivated by the deep
architecture of CNN-based descriptors [19], we further build hierarchical self-
correlation surfaces to enhance the robustness of the DSC descriptor (Sect. 4.4).
Densely sampled descriptors are efficiently computed over an entire image using
a method based on fast edge-aware filtering (Sect. 4.3). Figure 2(c) illustrates
the DSC descriptor, which incorporates a circular spatial pyramid pooling on
hierarchical self-correlation surfaces.

4.2 SSC: Single Self-correlation

To simultaneously leverage the benefits of self-similarity in DASC [10] and the
deep architecture of CNNs while overcoming the limitations of each method, our
approach builds self-correlation surfaces. Unlike DASC [10], the feature response
is obtained through circular spatial pyramid pooling. We start by describing a
single-layer version of DSC, which we denote as SSC.

Self-correlations. To build a self-correlation surface, we randomly select NK

points from a log-polar circular point set Pi defined within a local support win-
dow Ri. We convolve a patch Fri,k

centered at the k-th point ri,k with all patches
Fj , which is defined for j ∈ Ri and k ∈ {1, ..., NK} as shown in Fig. 3(b). Sim-
ilar to DASC [10], the similarity C(Fri,k

,Fj) between patch pairs is measured
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Fig. 5. Efficient computation of self-correlation surfaces on the image. (a) An image
fi with a doubled support window R∗

i and random samples. (b) 1-D vectorial self-
correlation surface. (c) Self-correlation surfaces. (d) Self-correlation responses after C-
SPP. With an efficient edge-aware filtering and response reformulation, self-correlation
responses are computed efficiently in a dense manner.

using an adaptive self-correlation, which is known to be effective in address-
ing cross-modality. With (i, k) omitted for simplicity, C(Fr,Fj) is computed as
follows:

C(Fr,Fj) =

∑
r′,j′ ωr,r′(fr′ − Gr,r)(fj′ − Gr,j)

√∑
r′ ωr,r′(fr′ − Gr,r)2

√∑
r′,j′ ωr,r′(fj′ − Gr,j)2

, (3)

for r′ ∈ Fr and j′ ∈ Fj . Gr,r =
∑

r′ ωr,r′fr′ and Gr,j =
∑

r′,j′ ωr,r′fj′ represent
weighted averages of fr′ and fj′ . Similar to DASC [10], the weight ωr,r′ represents
how similar two pixels r and r′ are, and is normalized, i.e.,

∑
r′ ωr,r′ = 1. It may

be defined using any form of edge-aware weighting [38,39].

Circular Spatial Pyramid Pooling. To encode the feature responses on the
self-correlation surface, we propose a circular spatial pyramid pooling (C-SPP)
scheme, which pools the responses within each hierarchical spatial bin, similar
to a spatial pyramid pooling (SPP) [20,40,41] but in a circular configuration.
Note that many existing descriptors also adopt a circular pooling scheme thanks
to its robustness based on a higher pixel density near a central pixel [22–24]. We
further encode more structure information with a C-SPP.

The circular pyramidal bins SBi(u) are defined from log-polar circular bins
Bi, where u indexes all pyramidal levels s ∈ {1, ..., NS} and all bins in each level
s as in Fig. 4. The circular pyramidal bin at the top of pyramid, i.e., s = 1,
encompasses all of bins Bi. At the second level, i.e., s = 2, it is defined by
dividing Bi into quadrants. For lower pyramid levels, i.e., s > 2, the circular
pyramidal bins are defined differently according to whether s is odd or even. For
an odd s, the bins are defined by dividing bins in the upper level into two parts
along the radius. For an even s, they are defined by dividing bins in the upper
level into two parts with respect to the angle. The set of all circular pyramidal
bins SBi is denoted such that SBi =

⋃
u SBi(u) for u ∈ {1, ..., NSB}, where the

number of circular spatial pyramid bins is defined as NSB =
∑NS

s=22
s + 1.

As illustrated in Fig. 3(c), the feature responses are finally max-pooled on
the circular pyramidal bins SBi(u) of each self-correlation surface C(Fri,k

,Fj),
yielding a feature response
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Fig. 6. Visualization of SSC and DSC descriptor. Our architecture consists of a hierar-
chical self-correlational layer, circular spatial pyramid pooling layer, non-linear gating
layer, and normalization layer.

hi(k, u) = max
j∈SBi(u)

{C(Fri,k
,Fj)}, u ∈ {1, ..., NSB}. (4)

This pooling is repeated for all k ∈ {1, ..., NK}, yielding accumulated corre-
lation responses ĥi(l) =

⋃
{k,u} hi(k, u) where l indexes for all k and u.

Interestingly, LSS [22] also uses the max pooling strategy to mitigate the
effects of non-rigid image deformation. However, max pooling in the 2-D self-
correlation surface of LSS [22] loses fine-scale matching details as reported in
[10]. By contrast, DSC employs circular spatial pyramid pooling in a 3-D self-
correlation surface that provides a more discriminative representation of self-
similarities, thus maintaining fine-scale matching details as well as providing
robustness to non-rigid image deformations.

Non-linear Gating and Nomalization. The final feature responses are
passed through a non-linear and normalization layer to mitigate the effects of
outliers. With accumulated correlation responses ĥi, the single self-correlation
(SSC) descriptor DSSC

i =
⋃

ld
SSC
i (l) is computed for l ∈ {1, ..., LSSC} through a

non-linear gating layer:

dSSCi (l) = exp(−(1 − |ĥi(l)|)/σc), (5)

where σc is a Gaussian kernel bandwidth. The size of features obtained from the
SSC becomes LSSC = NKNSB. Finally, dSSCi (l) for each pixel i is normalized
with an L-2 norm for all l.

4.3 Efficient Computation for Dense Description

The most time-consuming part of DSC is in constructing self-correlation sur-
faces C(Fri,k

,Fj) for k and j, where NKM2
R computations of (3) are needed for
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each pixel i. Straightforward computation of a weighted summation using ω in
(3) would require considerable processing with a computational complexity of
O(IMFNKM2

R), where I = HfWf represents the image size (height Hf and
width Wf ). To expedite processing, we utilize fast edge-aware filtering [38,39]
and propose a pre-computation scheme for self-correlation surfaces.

Similar to DASC [10], we compute C(Fri,k
,Fj) efficiently by first rearranging

the sampling patterns (ri,k, j) into reference-biased pairs (i, jr) = (i, i+ri,k −j).
C(Fi,Fjr ) can then be expressed as

C(Fi,Fjr ) =
Gi,ijr − Gi,i · Gi,jr

√Gi,i2 − (Gi,i)2 ·
√

Gi,j2
r

− (Gi,jr )2
, (6)

where Gi,ijr =
∑

i′,j′
r
ωi,i′fi′fj′

r
, Gi,j2

r
=

∑
i′,j′

r
ωi,i′f2

j′
r
, and Gi,i2 =

∑
i′ ωi,i′f2

i′ .
C(Fi,Fjr ) can be efficiently computed using any form of fast edge-aware filter
[38,39] with a complexity of O(INKM2

R). C(Fri,k
,Fj) is then simply obtained

from C(Fi,Fjr ) by re-indexing sampling patterns.
Though we remove the computational dependency on patch size MF , NKM2

R
computations of (6) are still needed to obtain the self-correlation surfaces, where
many sampling pairs are repeated. To avoid such redundancy, we first compute
self-correlation surface C(Fi,Fj) for j ∈ R∗

i with a doubled local support window
R∗

i of size 2MR. A doubled local support window is used because (6) is computed
with patch Fjr and the minimum support window size for R∗

i to cover all samples
within Ri is 2MR as shown in Fig. 5(b). After the self-correlation surface for R∗

i

is computed once over the image domain, C(Fri,k
,Fj) can be extracted through

an index mapping process, where the indexes for Ri−ri,k
are estimated from R∗

i .
Finally, the computational complexity of constructing the 3-D self-correlation
surfaces becomes O(I4M2

R), which is smaller than O(INkM2
R) as Nk � 4.

Algorithm 1: Deep Self-Correlation (DSC) Descriptor

Input : image fi, random samples ri,k.
Output : DSC descriptor DDSC

i .
Parameters : The number of circular pyramidal bins (point sets) NSB(NSP).
1 : Compute C(Fi,Fj) for a doubled support window R∗

i by using (6).
2 : Estimate C(Fri,k ,Fj) from C(Fi,Fj) according to the index mapping process.

for v = 1 : NSP do /∗ hierarchical aggregation using average pooling ∗/
3 : Determine a circular pyramidal point SPi(v).
4 : Compute C(Fv,Fj) by using an average pooling for SPi(v) on C(Fri,k ,Fj).

end for
for u = 1 : NSB do /∗ hierarchical spatial aggregation using C-SPP ∗/

6 : Determine a circular pyramidal bin SBi(u).
7 : Compute hi(k, u) and hi(v, u) by using C-SPP on each SBi(u)

from C(Fri,k ,Fj) and C(Fv,Fj), respectively.
end for

8 : Build hierarchical self-correlation responses ĥi(l) from hi(k, u) and hi(v, u).
9 : Compute a DSC descriptor DDSC

i =
⋃

ld
DSC
i (l), followed by L-2 normalization.
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4.4 DSC: Deep Self-correlation

So far, we have discussed how to build the self-correlation surface on a single
level. In this section, we extend this idea by encoding self-similar structures at
multiple levels in a manner similar to a deep architecture widely adopted in
CNNs [26]. DSC is defined similarly to SSC, except that an average pooling is
executed before C-SPP (see Fig. 6). With self-correlation surfaces, we perform
the average pooling on circular pyramidal point sets. In comparison to the self-
correlations just from a single patch, the spatial aggregation of self-correlation
responses is clearly more robust, and it requires only marginal computational
overhead over SSC. The strength of such a hierarchical aggregation has also been
shown in [36].
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Fig. 7. Component analysis of DSC on the Middlebury benchmark [42] for varying
parameter values, such as (a) support window size MR, (b) number of log-polar circular
point Nρ × Nθ, (c) number of random samples NK , and (d) level of circular spatial
pyramid NS . In each experiment, all other parameters are fixed to the initial values.

To build the hierarchical self-correlation surface using an average pooling, we
first define the circular pyramidal point sets SPi(v) from log-polar circular point
sets Pi, where v associates all pyramidal levels o ∈ {1, ..., NO} and all points in
each level o. In the average pooling, the circular pyramidal bins SBi(u) used in
C-SPP are re-used such that SPi(v) = {j|j ∈ Pi, j ∈ SBi(u)}, thus NS = NO.
Deep self-correlation surfaces are defined by aggregating C(Fri,k

,Fj) for all ri,k

patches determined on each SPi(v) such that

C(Fv,Fj) =
∑

ri,k∈SPi(v)
C(Fri,k

,Fj)/Nv, (7)

which is defined for all v, and Nv is the number of ri,k patches within SPi(v). The
hierarchical surfaces are sequentially aggregated using average pooling from the
bottom to the top of the circular pyramidal point set SPi(v). After computing
hierarchical self-correlational aggregations, the DSC employs C-SPP as well as
non-linear and normalization layer, similar to SSC as presented in Sect. 4.2. A
hierarchical self-correlation response hi(v, u) is computed using the C-SPP as

hi(v, u) = max
j∈SBi(u)

{C(Fv,Fj)}. (8)
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(a) image 1 (b) image 2 (c) ANCC (d) SIFT (e) LSS (f) DASC (g) DSC

Fig. 8. Comparison of disparity estimations for Moebius and Dolls image pairs across
illumination combination ‘1/3’ and exposure combination ‘0/2’, respectively. Compared
to other methods, DSC estimates more accurate and edge-preserved disparity maps.

Accumulated self-correlation responses are built from hi(k, u) in (4) and
hi(v, u) in (8) such that ĥi(l) =

⋃
{k,v,u} {hi(k, u), hi(v, u)}. Our DSC descriptor

dDSC
i (l) is then passed through a non-linear layer. DDSC

i =
⋃

ld
DSC
i (l) is built for

l ∈ {1, ..., LDSC} with LDSC = (NK + NSP)NSB. Finally, dDSC
i (l) for each pixel

i is normalized with an L-2 norm for all l.

5 Experimental Results and Discussion

5.1 Experimental Settings

In our experiments, the DSC was implemented with the following fixed para-
meter settings for all datasets: {σc,MF ,MR, NK , NS} = {0.5, 5, 9, 32, 3}, and
{Nρ, Nθ} = {4, 16}. The dimension of SSC and DSC are fixed to 416 and 585,
respectively. We chose the guided filter (GF) for edge-aware filtering in (6), with
a smoothness parameter of ε = 0.032. We implemented the DSC in C++ on an
Intel Core i7-3770 CPU at 3.40 GHz. We will make our code publicly available.
The DSC was compared to other state-of-the-art descriptors (SIFT [14], DAISY
[23], BRIEF [24], LIOP [28], DaLI [29], LSS [22], and DASC [10]), as well as to
area-based approaches (ANCC [35] and RSNCC [9]). Furthermore, to evaluate
the performance gain with a deep architecture, we compared SSC and DSC.

5.2 Parameter Evaluation

The performance of DSC is exhibited in Fig. 7 for varying parameter values,
including support window size MR, number of log-polar circular points Nρ ×
Nθ, number of random samples NK , and levels of the circular spatial pyramid
NS . Note that NO = NS . Figure 7(c) and (d) demonstrate the effectiveness of
self-correlation surfaces and deep architectures. For a quantitative analysis, we
measured the average bad-pixel error rate on the Middlebury benchmark [42].
With a larger support window MR, the matching quality improves rapidly until
about 9×9. Nρ×Nθ influences the performance of circular pooling, which is found
to plateau at 4×16. Using a larger number of random samples NK yields better
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Fig. 9. Average bad-pixel error rate on the Middlebury benchmark [42] with illumina-
tion and exposure variations. Optimization was done by GC in (a), (b), and by WTA
in (c), (d). DSC descriptor shows the best performance with the lowest error rate.

(a) image 1 (b) image 2 (c) BRIEF (d) LSS (e) DASC (f) SSC (g) DSC

Fig. 10. Dense correspondence evaluations for (from top to bottom) RGB-NIR, flash-
noflash, different exposures, and blurred-sharp images. Compared to others, DSC esti-
mates more reliable dense correspondences for challenging cross-modal pairs.

performance since DSC encodes more information. The level of circular spatial
pyramid NS also affects the amount of encoding. Based on these experiments,
we set NK = 32 and NS = 3 in consideration of efficiency and robustness.

5.3 Middlebury Stereo Benchmark

We evaluated DSC on the Middlebury stereo benchmark [42], which contains
illumination and exposure variations. In the experiments, the illumination (expo-
sure) combination ‘1/3’ indicates that two images were captured under the 1st

and 3rd illumination (exposure) conditions. For a quantitative evaluation, we
measured the bad-pixel error rate in non-occluded areas of disparity maps [42].

Figure 8 shows the disparity maps estimated under severe illumination and
exposure variations with winner-takes-all (WTA) optimization. Figure 9 displays
the average bad-pixel error rates of disparity maps obtained under illumination
or exposure variations, with graph-cut (GC) [43] and WTA optimization. Area-
based approaches (ANCC [35] and RSNCC [9]) are sensitive to severe radiometric
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Table 1. Comparison of quantitative evaluation on cross-modal benchmark.

Methods WTA optimization SF optimization [11]

RGB-NIR flash-noflash diff. expo. blur-sharp RGB-NIR flash-noflash diff. expo. blur-sharp

ANCC [35] 23.21 20.42 25.19 26.14 18.45 14.14 11.96 19.24

RSNCC [9] 27.51 25.12 18.21 27.91 13.41 15.87 9.15 18.21

SIFT [14] 24.11 18.72 19.42 27.18 18.51 11.06 14.87 20.78

DAISY [23] 27.61 26.30 20.72 27.41 20.42 10.84 12.71 22.91

BRIEF [24] 29.14 18.29 17.13 26.43 17.54 9.21 9.54 19.72

LSS [22] 27.82 19.18 18.21 26.14 16.14 11.88 9.11 18.51

LIOP [28] 24.42 16.42 14.22 20.42 15.32 11.42 10.22 17.12

DASC [10] 14.51 13.24 10.32 16.42 13.42 7.11 7.21 11.21

SSC 10.12 10.12 8.22 14.22 9.12 6.18 5.22 9.12

DSC 8.12 8.22 6.72 13.28 7.62 5.12 4.72 8.01

(a) image 1 (b) image 2 (c) DAISY (d) BRIEF (e) LSS (f) DaLI (g) DSC

Fig. 11. Dense correspondence comparisons for images with different illumination con-
ditions and non-rigid image deformations [29]. Compared to other approaches, DSC
provides more accurate dense correspondence estimates with reduced artifacts.

variations, especially when local variations occur frequently. Feature descriptor-
based methods (SIFT [14], DAISY [23], BRIEF [24], LSS [22], and DASC [10])
perform better than the area-based approaches, but they also provide limited
performance. Our DSC achieves the best results both quantitatively and quali-
tatively. Compared to SSC, the performance of DSC is highly improved, where
the performance benefits of the deep architecture are apparent.

5.4 Cross-Modal and Cross-Spectral Benchmark

We evaluated DSC on a cross-modal and cross-spectral benchmark [10] contain-
ing various kinds of image pairs, namely RGB-NIR, different exposures, flash-
noflash, and blurred-sharp. Optimization for all descriptors and similarity mea-
sures was done using WTA and SIFT flow (SF) with hierarchical dual-layer belief
propagation [11], for which the code is publicly available. Sparse ground truths
for those images are used for error measurement as done in [10].
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Table 2. Average error rates on the DaLI benchmark.

Methods Def. Illum. Def./Illum. Aver.

DAISY [23] 43.98 42.72 43.42 43.37

BRIEF [24] 41.51 37.14 41.35 40

LSS [22] 40.81 39.54 40.11 40.12

LIOP [28] 28.72 31.72 30.21 30.22

DaLI [29] 27.12 27.31 27.99 27.47

DASC [10] 26.21 24.83 27.51 26.18

SSC 23.42 22.21 24.17 23.27

DSC 20.14 20.72 21.87 20.91

Figure 10 provides a qualitative comparison of the DSC descriptor to other
state-of-the-art approaches. As already described in the literature [9], gradient-
based approaches such as SIFT [14] and DAISY [23] have shown limited per-
formance for RGB-NIR pairs where gradient reversals and inversions frequently
appear. BRIEF [24] cannot deal with noisy regions and modality-based appear-
ance differences since it is formulated on pixel differences only. Unlike these
approaches, LSS [22] and DASC [10] consider local self-similarities, but LSS is
lacking in discriminative power for dense matching. DASC also exhibits limited
performance. Compared to those methods, the DSC displays better correspon-
dence estimation. We also performed a quantitative evaluation with results listed
in Table 1, which also clearly demonstrates the effectiveness of DSC.

5.5 DaLI Benchmark

We also evaluated DSC on a recent, publicly available dataset featuring challeng-
ing non-rigid deformations and very severe illumination changes [29]. Figure 11
presents dense correspondence estimates for this benchmark [29]. A quantitative
evaluation is given in Table 2 using ground truth feature points sparsely extracted
for each image, although DSC is designed to estimate dense correspondences. As
expected, conventional gradient-based and intensity comparison-based feature
descriptors, including SIFT [14], DAISY [23], and BRIEF [24], do not provide
reliable correspondence performance. LSS [22] and DASC [10] exhibit relatively
high performance for illumination changes, but are limited on non-rigid deforma-
tions. LIOP [28] provides robustness to radiometric variations, but is sensitive
to non-rigid deformations. Although DaLI [29] provides robust correspondences,
it requires considerable computation for dense matching. DSC offers greater
discriminative power as well as more robustness to non-rigid deformations in
comparison to the state-of-the-art cross-modality descriptors.
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Table 3. Computation speed of DSC and other state-of-the-art local and global descrip-
tors. The brute-force and efficient implementations of DSC are denoted by * and †,
respectively.

Image size SIFT DAISY LSS DaLI DASC DSC* DSC†
463 × 370 130.3s 2.5s 31s 352.2s 2.7s 193.2s 9.2s

5.6 Computational Speed

In Table 3, we compared the computational speed of DSC to the state-of-the-art
local descriptor, namely DaLI [29], and dense descriptors, namely DAISY [23],
LSS [22], and DASC [10]. Even though DSC needs more computational time
compared to some previous dense descriptors, it provides significantly improved
matching performance as described previously.

6 Conclusion

The deep self-correlation (DSC) descriptor was proposed for establishing dense
correspondences between images taken under different imaging modalities. Its
high performance in comparison to state-of-the-art cross-modality descriptors
can be attributed to its greater robustness to non-rigid deformations because of
its effective pooling scheme, and more importantly its heightened discriminative
power from a more comprehensive representation of self-similar structure and
its formulation in a deep architecture. DSC was validated on an extensive set
of experiments that cover a broad range of cross-modal differences. In future
work, thanks to the robustness to non-rigid deformations and high discriminative
power, DSC can potentially benefit object detection and semantic segmentation.
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(MSIP) (No. R0115-15-1007, High quality 2d-to-multiview contents generation from
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