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Discrete-Continuous Transformation Matching
for Dense Semantic Correspondence
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Abstract—Techniques for dense semantic correspondence have provided limited ability to deal with the geometric variations that
commonly exist between semantically similar images. While variations due to scale and rotation have been examined, there is a lack of
practical solutions for more complex deformations such as affine transformations because of the tremendous size of the associated
solution space. To address this problem, we present a discrete-continuous transformation matching (DCTM) framework where dense
affine transformation fields are inferred through a discrete label optimization in which the labels are iteratively updated via continuous
regularization. In this way, our approach draws solutions from the continuous space of affine transformations in a manner that can be
computed efficiently through constant-time edge-aware filtering and a proposed affine-varying CNN-based descriptor. Furthermore,
leveraging correspondence consistency and confidence-guided filtering in each iteration facilitates the convergence of our method.
Experimental results show that this model outperforms the state-of-the-art methods for dense semantic correspondence on various
benchmarks and applications.

Index Terms—Dense semantic correspondence, discrete optimization, continuous optimization, interative inference
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1 INTRODUCTION

E STABLISHING dense correspondences across semantically
similar images is essential for numerous computer vi-

sion and computational photography applications, such as
nonparametric scene parsing, scene recognition, image reg-
istration, semantic segmentation, or image editing [1], [2],
[3]. Unlike traditional dense correspondence for estimating
depth [4] or optical flow [5], [6], semantic correspondence
poses additional challenges due to intra-class appearance
and shape variations among different instances within the
same object or scene category, which can degrade matching
accuracy by conventional approaches [2], [7].

Recently, several methods have attempted to deal with
the appearance differences using convolutional neural net-
work (CNN) based descriptors because of their high invari-
ance to appearance variations [8], [9], [10], [11]. However,
geometric variations are considered in just a limited manner
through conventional constraint settings such as those used
for stereo matching or optical flow (i.e., translational motion
only). Some methods have been proposed to solve more
complex geometric variations such as scale or rotation [12],
[13], [14], but they consider only a set of discretized scales
and/or rotations as possible solutions, and do not capture
the non-rigid geometric deformations that commonly exist
between semantically similar images.

• S. Kim and K. Sohn are with the School of Electrical and Electronic
Engineering, Yonsei University, Seoul 120-749, Korea.
E-mail: {srkim89, khsohn}@yonsei.ac.kr

• D. Min is with the Department of Computer Science and Engineering,
Ewha Womans University, Seoul 03760, South Korea.
E-mail: dbmin@ewha.ac.kr

• S. Lin is with Microsoft Research, Beijing 100080, China.
E-mail: stevelin@microsoft.com

* Corresponding author

(a) (b) (c) (d)

(e) (f) (g) (h)
Fig. 1. Visualization of our DCTM results: (a) source image, (b) target
image, (c), (d) ground truth correspondences, (e), (f), (g), (h) warped im-
ages and correspondences after discrete and continuous optimization,
respectively. For semantically similar images undergoing non-rigid de-
formations, our DCTM estimates reliable correspondences by iteratively
optimizing the discrete label space via continuous regularization.

It has been shown that these non-rigid image defor-
mations can be locally well approximated by affine trans-
formations [15], [16], [17]. To estimate dense affine trans-
formation fields, a possible approach is to discretize the
space of affine transformations and find a labeling solution.
However, the higher-dimensional search space for affine
transformations makes discrete global optimization algo-
rithms such as graph cut [18] or belief propagation (BP) [19],
[20] and discrete local optimization such as constant-time
filter-based cost volume filtering (CVF) [21] computationally
infeasible. Although some methods such as PatchMatch
belief propagation (PMBP) [22] and Sped-up PMBP (SPM-
BP) [23] have been proposed for more efficient computation
over large label spaces in discrete global optimization, they
still cannot deal with extremely large search spaces such as
that of affine transformations. In discrete local optimization,
the PatchMatch Filter (PMF) [24] integrates constant-time
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filter-based CVF [21], [25] with a superpixel-based random-
ized search strategy inspired by PatchMatch [26] to reduce
computational complexity with respect to the search space.
PMF [24] is also leveraged for dense semantic correspon-
dence in DAISY Filter Flow (DFF) [7], which finds labels
for displacement fields as well as for scale and rotation.
Extending DFF [7] to solve for affine transformations would
be challenging though. One reason is that its efficient tech-
nique for computing DAISY features [27] at pre-determined
scales and rotations cannot be directly applied for affine
transformations defined over an infinite continuous solution
space. Another reason is that, as shown in [14], [23], the
weak implicit smoothness constraint embedded in PMF [24]
makes it more susceptible to erroneous local minima, and
this problem may be magnified in the higher-dimensional
search space for affine transformations. An explicit smooth-
ness constraint has been adopted to alleviate this problem
in the context of stereo matching [28], but was designed
specifically for depth regularization.

In this paper, we introduce an effective method for
estimating dense affine transformation fields between se-
mantically similar images, as shown in Fig. 1. The key idea is
to cast the inference of dense affine transformation fields as a
discrete local labeling optimization with a continuous global
regularization that updates the discrete candidate labels. An
affine transformation field is efficiently inferred in a filter-
based discrete labeling optimization inspired by PMF [24],
and then the discrete affine transformation field is globally
regularized in a moving least squares manner [15]. These
two steps are iterated in alternation until convergence.
Through the synergy of the discrete local labeling and con-
tinuous global regularization, our method yields continuous
solutions from the space of affine transformations, instead
of simply selecting from a pre-defined, finite set of discrete
label samples. We show that this continuous regulariza-
tion additionally overcomes the aforementioned implicit
smoothness constraint problem in PMF [24]. To further boost
matching performance and convergence of our method, we
also leverage correspondence consistency and an evolving
cost aggregation based on confidence of correspondence in
each iteration. Moreover, we model affine transformation
fields directly within the fully convolutional self-similarity
(FCSS) descriptor [11] in a manner that sampling pat-
terns are reformulated to adapt to affine transformation
fields. By efficiently reducing the repeated computations
over computing FCSS descriptors on various affine trans-
formations of the image, our approach achieves significant
improvements in processing speed. Experimental results
show that the presented model outperforms the latest meth-
ods for dense semantic correspondence on several bench-
marks, including that of TSS [29], PF-WILLOW [30], PF-
PASCAL [31], the CUB-200-2011 dataset [32], the PASCAL-
VOC part dataset [33], and Caltech-101 [34].

This manuscript extends the conference version of this
work [35]. It newly adds (1) an extension of DCTM based
on correspondence consistency and confidence-guided fil-
tering; (2) an in-depth analysis of DCTM; and (3) an exten-
sive comparative study with existing semantic correspon-
dence methods using various datasets. The source code
of this work is available online at our project webpage:
http://diml.yonsei.ac.kr/∼srkim/DCTM/.

2 RELATED WORK

2.1 Semantic Correspondence

Most conventional techniques for dense semantic correspon-
dence employ handcrafted features such as SIFT [36] and
DAISY [27]. To elevate matching quality, they focus on im-
proving optimization. Liu et al. pioneered the idea of dense
correspondence across different scenes, and proposed SIFT
flow (SF) [2], which is based on hierarchical dual-layer belief
propagation. Inspired by this, Kim et al. [37] proposed the
deformable spatial pyramid (DSP) which performs multi-
scale regularization with a hierarchical graph. Hassner et
al. [38] proposed a method to estimate correspondences be-
tween query and reference face images by regularizing the
correspondence fields to produce similar semantic contents.
More recently, Yang et al. [39] proposed the object-aware
hierarchical graph (OHG) to regulate matching consistency
over whole objects. Among other methods are those that
take an exemplar-LDA approach [40], employ joint image
set alignment [41], or jointly solve for cosegmentation [29].
Recently, Ham et al. [30], [31] presented the proposal flow
(PF) algorithm to estimate semantic correspondences using
object proposals. As all of these techniques use handcrafted
descriptors, they lack the robustness to deformations that is
possible with deep CNNs.

Recently, deep CNN-based descriptors have been used
to establish semantic correspondences because of their high
invariance to appearance variations. Pre-trained CNN fea-
tures have been employed with the SIFT Flow [8]. Zhou
et al. [10] proposed a deep network that exploits cycle-
consistency with a 3-D CAD model [42] as a supervisory
signal. Choy et al. [9] proposed the universal correspon-
dence network (UCN) based on fully convolutional feature
learning. Most recently, Novotny et al. [43] proposed An-
chorNet that learns geometry-sensitive features for seman-
tic correspondence with weak image-level labels. Kim et
al. [11], [44] proposed the FCSS descriptor that formulates
local self-similarity (LSS) [45] within a fully convolutional
network. Because of its LSS-based structure, FCSS is inher-
ently insensitive to intra-class appearance variations while
maintaining precise spatial localization ability. Inspired by
PF [30], Ufer et al. [46] proposed a method based on con-
volutional feature pyramids and activation-guided feature
selection. Han et al. [47] proposed SCNet for learning a
geometrically plausible model for semantic correspondence.
Gaur et al. [48] proposed a novel optimization to re-purpose
deep convolutional features to group semantically similar
object parts. While these aforementioned techniques pro-
vide some amount of geometric invariance, none of them
can deal with affine transformations across images, which
frequently occur in dense semantic correspondence.

2.2 Transformation Invariance

Several methods aim to alleviate geometric variation prob-
lems in dense semantic correspondence through extensions
of SF [2], including scale-less SF (SLS) [12], scale-space SF
(SSF) [13], and generalized DSP (GDSP) [14]. However,
these techniques have a critical practical limitation that
their computational cost increases linearly with the search
space size. Tau et al. [49] proposed a dense correspondence
algorithm that propagates scales estimated from sparse
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interest points and uses them to optimize correspondence
fields. However, since erroneous scales can be propagated
from initial estimates, it has shown limited performance.
A generalized PatchMatch algorithm [26] was proposed
for efficient matching that leverages a randomized search
scheme to avoid an exhaustive search for all possible solu-
tion spaces. It was utilized by HaCohen et al. [1] in a non-
rigid dense correspondence (NRDC) algorithm, but employs
weak matching evidence that cannot guarantee reliable
performance. Geometric invariance to scale and rotation is
provided by DFF [7], but its implicit smoothness constraint
which relies on randomized sampling and propagation of
good estimates in the direct neighborhood often induces
mismatches. Recently, Rocco et al. [50], [51] proposed a CNN
architecture for estimating a geometric matching (GMat)
model that includes affine transformations. However, it
only estimates globally-varying geometric fields, and thus
exhibits limited performance in dealing with locally-varying
geometric deformations. Moreover, deep CNN-based meth-
ods require a substantial learning procedure on large-scale
training samples, limiting their applicability.

2.3 Image Manipulation
A possible approach for estimating dense correspondences
is to interpolate sparsely matched points using thin plate
splines (TPS) [52], motion coherence [16], [17], [53], or co-
herence point drift [54]. Moving least squares (MLS) is also
a scattered point interpolation technique, first introduced
in [55] to reconstruct a continuous function from a set
of point samples by minimizing spatially-weighted least
squares. MLS has been successfully used in applications
such as image deformation [15], surface reconstruction [56],
image super-resolution and denoising [57], or color trans-
fer [58]. Inspired by the MLS concept, our method utilizes
it to regularize estimated affine fields, but with a different
weight function and an efficient computational scheme.

More related to our work are the methods of Lin et
al. [16], [17], which estimate dense affine transformation
fields constrained by global smoothness. However, they are
formulated with sparse correspondences and also require
considerable computation by applying complex non-linear
optimization. By contrast, our method adopts dense descrip-
tors that can be evaluated efficiently for any affine transfor-
mation, and employs quadratic continuous optimization to
rapidly infer dense affine transformation fields.

3 METHOD

3.1 Problem Formulation and Model
Given a pair of semantically similar images I and I ′, the
objective of dense correspondence estimation is to establish
a correspondence i′ for each pixel i = [ix, iy] in I . Unlike
conventional dense correspondence settings for estimating
depth [4], optical flow [5], [6], or similarity transformations
(i.e., displacement, rotation, and uniform scale transforma-
tions) [7], [14], our objective is to infer a field of affine
transformations, each represented by a 2× 3 matrix

Ti =

[
Ti,x

Ti,y

]
(1)

that maps pixel i to i′ = Tii, where i is pixel i represented
in homogeneous coordinates such that i = [i, 1]T .

In this work, we solve dense affine transformation fields
that may lie anywhere in the continuous solution space by
minimizing an energy of the form

E(T) = Edata(T) + λEsmooth(T), (2)

consisting of a data term that accounts for matching evi-
dence between feature descriptors and a smoothness term
that favors similar affine transformations among adjacent
pixels with a balancing parameter λ.

3.1.1 Data Term
Our data term is defined as follows:

Edata(T) =
∑
i

∑
j∈Ni

ωIij min(‖Dj −D′j′(Ti)‖1, τ). (3)

It represents matching evidence given an affine transfor-
mation Ti for each pixel i, by aggregating the matching
costs between descriptors Dj and D′j′(Ti) of neighboring
pixels j and transformed pixels j′ = Tij within a local
aggregation window Ni in a structure-aware manner. A
truncation threshold τ is used to deal with outliers and
occlusions. It should be noted that aggregated data terms
have been popularly used in stereo matching [4], [28] and
optical flow [23]. For dense semantic correspondence, some
methods have also employed aggregated data terms; how-
ever, they often produce undesirable results across object
boundaries due to uniform weights that ignore image struc-
ture [14], [37], or fail to deal with more complex geometric
distortions like affine transformations as they rely on a
square grid structure for local aggregation windows [7].
By contrast, the proposed method adaptively aggregates
matching costs on a geometrically-variant grid structure
using an adaptive weight ωIij guided by the image I , e.g.,
ωIij ∝ exp(−‖i−j‖2/σr−‖Ii−Ij‖2/σc), which measures ge-
ometric closeness and intensity similarity with parameters
σr and σc as in [24], [59], [60]. It thus enables producing spa-
tially smooth yet image discontinuity-preserving labeling
results even under complex geometric deformations such
as affine transformations.

3.1.2 Smoothness Term
Our smoothness term is defined to regularize affine trans-
formation fields within a local neighborhood as follows:

Esmooth(T) =
∑
i

∑
u∈Mi

υIiu‖Tiu−Tuu‖2. (4)

When the affine transformation T is constrained to [I2×2,v]
with displacement fields v = [vx, vy]T and Mi is the 4-
neighborhood, this smoothness term becomes the first order
derivative of the optical flow as in many conventional meth-
ods [2], [22], [23], [61]. However, non-rigid deformations
frequently occur in semantic correspondence, and such a
basic constraint is inadequate for modeling the smoothness
of affine transformation fields. Our smoothness term is for-
mulated to address this by regularizing affine transforma-
tions Ti in a moving least squares manner [15] within local
neighborhood Mi. We define the smoothness constraint of
affine transformation fields by fitting Ti based on the affine
flow fields of neighboring pixels Tuu. Unlike conventional
moving least squares solvers [15], [58], our smoothness term
incorporates an adaptive weight υIiu guided by the image
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I as in [59], [60] for image structure-aware regularization,
defined similar to ωIij .

3.1.3 Overview
Minimizing the energy function E(T) in (2) is a non-convex
optimization problem defined over an infinite continuous
solution space. With fine-scale discretization of this space,
affine transformation fields could be estimated through
discrete global optimization [18], [20], but at a tremendous
computational cost. Furthermore, due to the difficulty of
linearizing the non-convex data term, conventional contin-
uous optimization techniques [62], [63], [64] also cannot be
applied directly. We instead use a penalty decomposition
scheme to alternately solve for the discrete and contin-
uous affine transformation fields. An efficient filter-based
discrete local optimization technique is used to solve the
non-convex data term and locally estimate discrete affine
transformations in a manner similar to PMF [24]. The weak-
ness of the implicit smoothness constraint in the discrete
local optimization is overcome by regularizing the affine
transformation fields through global optimization in the
continuous space. This alternating optimization is repeated
until convergence. Furthermore, to acquire matching evi-
dence for dense semantic correspondence under spatially-
varying affine fields, we extend the FCSS descriptor [11] by
reformulating the sampling patterns.

3.2 Affine-FCSS Descriptor

To estimate a matching cost, a dense descriptor Di should
be extracted over the local support window of each im-
age point i. For this we employ the state-of-the-art FCSS
descriptor [11] for dense semantic correspondence, which
formulates LSS [45] within a fully convolutional network
in a manner where the patch sampling patterns and self-
similarity measure are both learned. Formally, FCSS can
be described as a vector of feature values Di = {Dli} for
l = {1, ..., L} with the maximum number of sampling
patterns L, where the feature values are computed as

Dli = exp(−S(i−Wl
s, i−Wl

t)/Wλ). (5)

S(·, ·) represents the self-similarity between two convolu-
tional activations taken from a sampling pattern around
center pixel i, and can be expressed as

S(i−Wl
s, i−Wl

t) = ‖F(Ai; W
l
s)−F(Ai; W

l
t)‖2, (6)

where F(Ai; W
l
s) = Ai−Wl

s
and F(Ai; W

l
t) = Ai−Wl

t
,

Wl
s = [W l

s,x,W
l
s,y] and Wl

t = [W l
t,x,W

l
t,y] compose the

l-th learned sampling pattern, and Ai is the convolutional
activation through feed-forward process F(Ii; Wc) for Ii
with network weights Wc.

The FCSS descriptor provides high invariance to appear-
ance variations, but it inherently cannot deal with geometric
variations due to its pre-defined sampling patterns for all
pixels in an image. Furthermore, although its computation
is efficient, FCSS cannot in practice be evaluated exhaus-
tively over all the affine candidates during optimization. To
alleviate these limitations, we extend the FCSS descriptor to
adapt to affine transformation fields. This is accomplished
by reformulating the sampling patterns to account for the
affine transformations. To expedite this computation, we
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(a) FCSS [11]

[ ,0]l T

i ti T W

[ ,0]l T

i si T W

i

(b) Affine-FCSS
Fig. 2. Illustration of (a) FCSS descriptor [11] and (b) affine-FCSS
descriptor. Within a support window, sampling patterns Wl

s and Wl
t

are transformed according to affine transformation Ti.

first pre-compute A over the entire image domain by pass-
ing I through the network. An FCSS descriptor Di(Ti)
transformed under an affine field Ti can then be built by
computing self-similarity on transformed sampling patterns

‖F(Ai; Ti[W
l
s, 0]T )−F(Ai; Ti[W

l
t, 0]T )‖2. (7)

With this approach, repeated computation of convolutional
activations over different affine transformations can be
avoided. It should be noted that for full affine invariance,
the receptive fields for measuring self-similarity should also
be transformed. However, transforming only the sampling
patterns without transforming the receptive fields, as done
in [65], [66], can nevertheless be effective in dealing with ge-
ometric variations. Differences between the FCSS descriptor
and the affine-FCSS descriptor are illustrated in Fig. 2.

3.3 Solution

Since affine transformation fields T are defined in an infinite
continuous solution space, minimizing the energy function
E(T) in (2) directly is infeasible. To solve this, we cast the
inference of dense affine transformation fields as a discrete
label optimization problem with continuous regularization.
We introduce an auxiliary affine field L to decouple our
data and regularization terms, and approximate the original
minimization problem as the following auxiliary energy
formulation:

Eaux(T,L) =
∑
i

∑
j∈Ni

ωIij min(‖Dj −D′j′(Ti)‖1, τ)

+ µ
∑
i

‖Li −Ti‖2 + λ
∑
i

∑
u∈Mi

υIiu‖Liu−Tuu‖2.

(8)

Since this energy function is based on two affine transforma-
tions, T and L, we employ alternating minimization to solve
for them and boost matching performance in a synergistic
manner. We split the optimization of Eaux(T,L) into two
sub-problems, namely a discrete local optimization problem
with respect to T and a continuous global optimization
problem with respect to L. Increasing µ to infinity through
the iterations drives the affine fields T and L together and
eventually results in limµ→∞Eaux ≈ E.

3.3.1 Discrete Local Optimization

To infer the discrete affine transformation field Tt with Lt−1

being fixed at the t-th iteration, we reformulate the energy
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Discrete Local Optimization

Continuous Global Optimization
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Fig. 3. Our DCTM method consists of discrete optimization and con-
tinuous optimization. Our DCTM method differs from the conventional
PMF [24] by alternately optimizing the discrete label space and updating
the discrete labels through continuous regularization.

function in (8) as follows:∑
i

∑
j∈Ni

ωIij min(‖Dj −D′j′(Ti)‖1, τ)

+ µt
∑
i

‖Ti − Lt−1i ‖
2 + λ

∑
i

∑
u∈Mi

υIiu‖Tuu− Lt−1i u‖2.

(9)

To solve this, we first discretize the continuous parame-
ter space and then solve the problem through filter-based
label inference such as PMF [24]. For the affine field T
within the set of discrete affine transformation candidates
L, the matching cost between descriptors Dj and D′j′(T) is
first measured as

Cj(T) = min(‖Dj −D′j′(T)‖1, τ), (10)

where D′j′(T) is the affine-varying descriptor with respect
to T. Furthermore, since j′ varies according to affine fields
such that j′ = Tj, affine-varying regular grids can be
used when aggregating matching costs, thus enabling affine-
invariant cost aggregation.

To aggregate the raw matching costs efficiently, we apply
edge-aware filtering (EAF) on Ci(T) such that

C̄i(T) =
∑

j∈Ni

ωIijCj(T), (11)

where ωIij is the adaptive weight of a support pixel j, which
can be defined in various ways with respect to the structures
of the image I [59], [60], [67]. Note that a simplified version
of affine-invariant cost aggregation along an image row has
been used in the context of stereo matching [22], [23], [24]
and has shown state-of-the-art performance.

In determining the affine field T, the matching costs
additionally account for the previously estimated affine
transformation field Lt−1 through the following term:

Gi(T) = µt‖T− Lt−1i ‖
2 + λ

∑
u∈Mi

υIiu‖Tu− Lt−1i u‖2.
(12)

Since ‖Tu−Lt−1i u‖2 = ‖(T−Lt−1i )u‖2 and T−Lt−1i is in-
dependent of pixel uwithin the support windowMi,Gi(T)
also can be efficiently computed by using fast EAFs [25], [68]

with marginal computation overhead for varying T within
the set of discrete affine transformation candidates L.

The resultant label at the t-th iteration is determined
with a winner-takes-all (WTA) scheme:

Tt
i = argminT∈L

(
C̄i(T) +Gi(T)

)
. (13)

Superpixel-based Iterative Inference: In filter-based dis-
crete local optimization in (13), exhaustively evaluating the
aggregated costs for every label L is still prohibitively time-
consuming. A fast randomized search by PatchMatch [26]
could be used to reduce computational complexity with
respect to the search space, but its weak implicit smoothness
constraint makes it more susceptible to erroneous local
minima in a high dimensional label space such as for affine
transformations. Additionally, a fragmented label search
used in PatchMatch hinders the application of constant-time
EAFs [24] for efficiently computing the aggregated cost in
(11). So we follow the key idea of PMF [24] which uses
segments or superpixels [69] to synergistically leverage the
cost filtering and randomized search of PatchMatch [26].
Superpixels are utilized as the basic units for performing
label propagation, randomized search, and subimage-based
efficient cost aggregation collaboratively. However, our op-
timization differs from PMF [24] by optimizing the discrete
label space with continuous regularization during the iter-
ations, which facilitates convergence and boosts matching
accuracy.

Specifically, we first decompose an image I into a set of
K disjoint segments {S(k)} for k = {1, ...,K} and build
its set of spatially adjacent segment neighbors. Then for
each segment S(k), two sets of label candidates from the
propagation and random search steps are evaluated for each
graph node in scan order at odd iterations and reverse scan
order at even iterations. In the propagation step, for each
segment S(k), a candidate pixel i is randomly sampled
from each neighboring segment, and a set of current best
labels Lprop is determined for i. For these Lprop, constant-
time EAF-based cost aggregation is then performed [60]
for the segment S(k). In the random search step, a center-
biased random search as done in PMF [24] is performed
for the current segment S(k). For the random search, the
possible affine transformations ∆T are set as a combination
of translations in the x- and y-directions [−h, h], [−w,w]
(where h and w are the height and width of the im-
age, respectively), scales in the x- and y-directions [1/2, 2],
[1/2, 2], rotation about the origin with the angle [−π/2, π/2],
shear transformation in the x- and y-directions with the
angle [−π/2, π/2], and reflection about the origin, x- and y-
directions. By evaluating a sequence of random labels Lrand

sampled around the current best label T∗, i.e., T∗+ 0.5l∆T
for l = {0, ..., |Lrand|} as in PMF [24], the current best affine
transformation fields are determined. After an iteration of
the propagation and random search steps for all segments, we
apply continuous optimization as described in the following
section to regularize the discrete affine transformation fields.

3.3.2 Continuous Global Optimization

To solve the continuous affine transformation field Lt with
Tt being fixed, we formulate the problem as an affine trans-
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(a) (b) (c) (d) (e) (f) (g) (h)
Fig. 4. DCTM convergence: (a) Source image; (b) Target image; Iterative evolution of warped images (c), (e), (g) after discrete optimization and (d),
(f), (h) after continuous optimization after iteration 1, 2, and 3. Our DCTM optimizes the discrete label space with continuous regularization during
the iterations, which facilitates convergence and boosts matching performance.

formation field regularization with the following energy:

∑
i

µt‖Li −Tt
i‖2 + λ

∑
u∈Mi

υIiu‖Liu−Tt
uu‖2

 . (14)

Since this involves solving spatially-varying weighted
least squares at each pixel i, the computational burden
inevitably increases when considering non-local neighbor-
hoods Mi. To expedite this, existing MLS solvers adopted
grid-based sampling [15] at the cost of quantization errors
or parallel processing [58] with an additional hardware. In
contrast, our method optimizes the objective with a sparse
matrix solver, yielding a substantial runtime gain. Since Li
can be formulated in the x- and y-directions separatively,
i.e., Li,x and Li,y, we decompose the objective into two
separable energy functions. For the x-direction, the energy
function can be represented as

∑
i

µt‖Li,x −Tt
i,x‖2 + λ

∑
u∈Mi

υIiu‖Li,xu−Tt
u,xu‖2

 .
(15)

By setting the gradient of this objective with respect to Li,x
to zero, the minimizer Lti,x is obtained by solving a linear
system based on a large sparse matrix:

(µt/λI + UI)Ltx = (µt/λI + KI)Tt
x, (16)

where I denotes a 3N×3N identity matrix withN denoting
the number of pixels in image I . Ltx and Tt

x denote 3N × 1
column vectors containing Lti,x and Tt

i,x, respectively. UI

and KI denote matrices defined as

UI =

 ψ(VIX2) ψ(VIXY ) ψ(VIX)
ψ(VIXY ) ψ(VIY 2) ψ(VIY )
ψ(VIX) ψ(VIY ) IN×N

 , (17)

and

KI =

 VIψ(X2) VIψ(XY ) VIψ(X)
VIψ(XY ) VIψ(Y 2) VIψ(Y )
VIψ(X) VIψ(Y ) VI

 , (18)

where VI is an N ×N matrix whose nonzero elements are
given by the weights υIiu, X and Y denote N × 1 column
vectors containing ix and iy, respectively, and ψ(·) denotes
a diagonalization operator. X2 = X ◦X , Y 2 = Y ◦ Y , and
XY = X ◦ Y , where ◦ denotes the Hadamard product.

The final result Ltx is then written as follows:

Ltx = (µt/λI + UI)−1(µt/λI + KI)Tt
x. (19)

Algorithm 1: DCTM Framework
Input: images I , I′, descriptor network parameter W
Output: dense affine transformation fields T
Parameters: number of segments K, pyramid levels M

/∗ Initialization ∗/
1 : Partition I into a set of disjoint K segments {S(k)}
2 : Initialize affine fields as L{0} = [I2×2,02×1]

for m = 1 : M do
3 : Build A{m}, A′,{m} for I{m}, I′,{m}

4 : Initialize affine fields T{m} = L{m−1}

5 : Compute D using A{m}

while not converged do
/∗ Discrete Local Optimization ∗/

6 : Initialize affine fields Tt = Lt−1

for k = 1 : K do
/∗ Propagation ∗/

7 : For S(k), construct affine candidates T ∈ Lprop
from neighboring segments

8 : For T, compute affine-varying D′(T) using A′,{m}

9 : Build cost volumes C̄(T) and G(T)
10 : Determine Tt using (13)

/∗ Random Search ∗/
11 : Construct affine candidates T ∈ Lrand

from randomly sampled affine fields
12 : Determine Tt by Step 8-10

end for
/∗ Continuous Global Optimization ∗/

13 : Estimate affine fields Lt from Tt using (19)
14 : Enlarge µ such that µt+1 = cµt

end while
end for

Since υIiu is the adaptive weight, the matrices UI and
KI can be efficiently computed using fast EAFs [60], [67].
Furthermore, since µ/λI + UI is a block-diagonal matrix,
Ltx can be estimated efficiently using a fast sparse matrix
solver [70]. After optimizing Lty in a similar manner, we
then have the continuous affine fields Lt.

After each iteration, we enlarge µ such that µt+1 = cµt

with a constant value 1 < c ≤ 2 to accelerate convergence.
Fig. 3 summarizes our DCTM method, and Fig. 4 illustrates
the convergence of our DCTM method.

3.3.3 Coarse-to-Fine Inference

Although our basic matching framework estimates reliable
affine fields, it may exhibit limited performance on weakly-
or repeated-textured regions. To alleviate these limitations,
we employ a coarse-to-fine approach to boost matching
performance and convergence based on the observation that
correspondences estimated at a coarse image scale tend to
be more reliable for weakly-textured regions, while corre-
spondences estimated at a fine scale localize and preserve
structure and motion details much better.
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(a) (b) (c) (d) (e) (f) (g) (h)
Fig. 5. Comparison of DCTM and CC-DCTM: (a), (b) source and target images, warped images with estimated correspondences after discrete and
continuous optimization in (c), (d) DCTM, and (e), (g) CC-DCTM, and (f), (h) their corresponding confidence maps. The estimated confidences in CC-
DCTM effectively reduce the effects of outliers during an iteration (top) and alleviate the ambiguity between image structures and correspondence
fields (bottom), which greatly improves matching quality and convergence.

Specifically, images I{m} are constructed at M image
pyramid levels m = {1, ...,M} and affine transformation
fields T{m} and L{m} are predicted at levelm. Coarser scale
results are then used as initialization for the finer levels.
Furthermore, at the coarsest level, an unconstrained random
search is conducted for possible affine transformation fields
(i.e., for search space T∗ + 0.5l∆T). However, at the finer
levels, the search range in the random search is increasingly
constrained to avoid erroneous local minima (i.e., for search
space T∗ + r0.5l∆T with constraint r). Algorithm 1 sum-
marizes the overall procedure of our DCTM method.

3.4 Extension of DCTM
For semantically similar images, there frequently exist in-
herently unmatchable regions caused by large viewpoint
changes, non-rigid deformations, noise, or severe appear-
ance variations [10], [29]. As in other algorithms, feature
descriptors inherently fail to capture reliable matching evi-
dence on such regions, and this problem often inhibits the
convergence of DCTM to a global minimum. Moreover, cost
aggregation guided only by the image I cannot fully esti-
mate a transformation field in a structure-adaptive manner
when there is inconsistency between structures of the image
and correspondence fields [31], [61]. To better deal with such
effects and improve convergence, we propose a correspon-
dence constrained-DCTM, denoted as CC-DCTM, which
leverages correspondence consistency between source and
target images to detect occlusions and outliers, and in-
corporates a correspondence-aware cost aggregation and
regularization schemes, as exemplified in Fig. 5.

3.4.1 Model
We reformulate our energy function to reliably aggregate
and regulate the affine transformation fields by using only
confident pixels within a local neighborhood. To this end,
the confident adaptive weights are defined as

ω̄Jij ∝ ωJijρj , ῡJiu ∝ υJiuρu, (20)

where ωJij and υJiu represent adaptive weights, defined
similar to ωIij and υIiu, using guidance J with the image I as
static guidance and the affine field T as dynamic guidance,
an approach that has shown reliable performance in [71].
This static and dynamic guidance involves computation
over a range with respect to a 7D vector1 when applying the

1. The 7D vector is composed of 1D for image I and 6D for the vector
form of affine transformation fields T.

Algorithm 2: CC-DCTM Framework
Input: images I , I′, descriptor network parameter W
Output: dense affine transformation fields T
Parameters: number of segments K, pyramid levels M

/∗ Initialization ∗/
1 : Partition I , I′ into a set of disjoint K segments {S(k)}, {S′(k)}
2 : Initialize L{0} = [I2×2,02×1], L′,{0} = [I2×2,02×1]

for m = 1 : M do
3 : Build A{m}, A′,{m} for I{m}, I′,{m}

4 : Initialize T{m} = L{m−1}, T′,{m} = L′,{m−1}

while not converged do
/∗ Discrete Local Optimization ∗/

5 : Estimate Tt, T′,t from Lt−1, L′,t−1

through Step 7-12 in Algorithm 1.
6 : Compute confidence ρ, ρ′ of Tt, T′,t using (21)

/∗ Continuous Global Optimization ∗/
7 : Estimate affine fields Lt, L′,t from Tt, T′,t using (16)
8 : Compute confidence ρ, ρ′ of Lt−1, L′,t−1 using (21)

end while
end for

confidence-guided edge-aware filtering, which significantly
increases the computational burden needed for employing
constant-time EAFs [60], [67]. To alleviate this problem, we
first apply principal components analysis (PCA) to project
the 7D vector into a 1D vector for dimension reduction [72],
[73], and then apply constant-time EAFs [60], [67] on this
guidance image J .

The confidence ρi is defined as follows:

ρi = exp(−‖i+ T′i′ i
′‖1/σ), (21)

where σ represents the parameter for the Gaussian kernel.
It is designed to encode the confidence of affine transfor-
mation field Ti by checking the consistency between pixel
i in I and a bi-directional mapping T′i′ i

′ for i′ = Tii in I ′.
Thus, the confidence works in such a way that the matching
costs of unreliable nearby points are excluded from the
aggregation in a correspondence-aware manner. It should be
noted that correspondence consistency has been popularly
used to eliminate erroneous correspondences as a post-
processing step [24], [29], [74]. Unlike these, our method
incorporates this into the iterative optimization framework.
This enables actively detection and handling of occlusion
regions and outliers, where feature descriptors frequently
fail to capture reliable matching evidence. Fig. 5 visualizes
confidence maps formed in CC-DCTM.

3.4.2 Solution
Minimizing the energy function may be hard since the con-
fident adaptive weights ω̄J and ῡJ need to be dynamically
defined with respect to the estimated affine transformation
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field T. Fortunately, the penalty decomposition scheme for
DCTM in (8), which alternatively solves for the discrete and
continuous optimization, remains effective for minimizing
this energy function. Concretely, when solving the discrete
optimization at the t-th iteration, the confidence ρ is de-
termined with respect to Lt−1, while it is determined with
respect to Tt when solving the continuous optimization.

In the discrete optimization, the edge-aware aggregation
in (11) can be defined as∑

j∈Ni

ω̄JijCj(T) =
∑

j∈Ni

ωJijρjCj(T)/
∑

j∈Ni

ωJijρj ,

(22)
which can be computed efficiently by applying the constant-
time EAF to ρiCi(T) and ρi, respectively, with guidance J
for the image I and current affine fields Lt−1, similar to [67],
[75]. In a similar way, Ḡi(T) in (12) can also be computed
efficiently.

In the continuous optimization, UI and KI in (16) also
can be efficiently determined using a computational scheme
similar to that for (22), which is used to obtain ŪJ and K̄J .
For example, similar to [61], V̄JX can be solved as

V̄JX = VJψ(F)X �VJF, (23)

where � represents the element-wise division operator. F is
the matrix form of ρi for all i. VJ is a kernel function whose
nonzero elements are given by the confidence-guided edge-
aware weights with the guidance J of the image I and cur-
rent affine fields Tt. Thus, it remains efficiently computable.
In a similar manner, V̄JY , V̄JX2, V̄JY 2, V̄JXY , V̄Jψ(X),
and V̄Jψ(Y ) can be efficiently computed, and they are used
to solve (19). Algorithm 2 provides a summary of the CC-
DCTM optimization.

4 EXPERIMENTAL RESULTS

4.1 Experimental Settings

For our experiments, we use the FCSS descriptor learned on
a version of the Caltech-101 dataset [34] that excludes image
pairs used for testing, without further training. The EAF
for ωIij , υ

I
iu, ωJij , and υJiu are performed using the guided

filter [68] because of its robustness and efficiency, where the
radius and smoothness parameters are set to {16, 0.01}. It
should be noted that any other features and EAFs could be
used in our approach. The weights in the energy function
are set initially to {λ, µ} = {0.01, 0.1} by cross-validation,
and µ is increased by factor c = 1.8 with subsequent itera-
tions. τ and σ are set to 4 and 30, respectively. The constraint
r for random search is set to 0.3. The SLIC [69] algorithm is
used for superpixel segmentation and the segment number
K is set to increase sublinearly with an image size, e.g.,
K = 500 for 640× 480 images, by considering the trade-off
between efficiency and robustness (see [7], [24]). The image
pyramid level M is set to 3. In experiments, estimated pixel-
varying affine transformation fields with DCTM and CC-
DCTM are represented as displacement vectors (i.e., flow
fields).

In the following, we comprehensively evaluate DCTM
and CC-DCTM through comparisons to state-of-the-art
methods for semantic correspondence, including SF [2],
DSP [37], Zhou et al. [10], Taniai et al. [29], PF [30], Ufer et
al. [46], OHG [39], ANet [43], Deep Image Analogy [76], and
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Fig. 6. Convergence analysis of DCTM and CC-DCTM on the TSS
benchmark [29].

TABLE 1
Matching accuracy compared to state-of-the-art correspondence

techniques with different features and matching methods on the TSS
benchmark [29]. † denotes fine-tuned features.

Methods
Features Matching FG3D JODS PASC. Avg.

DAISY [27]

SF [2]

0.636 0.373 0.338 0.449
DSP-SIFT [77] 0.659 0.524 0.352 0.512

VGG [78] 0.756 0.490 0.360 0.535
FCSS [11] 0.830 0.653 0.494 0.660
VGG [78] PF [30] 0.773 0.593 0.492 0.619
FCSS [11] 0.839 0.635 0.582 0.685
VGG† [78] SCNet [47] 0.776 0.608 0.474 0.619
VGG† [78] GMat [50] 0.835 0.656 0.527 0.673
DAISY [27]

DCTM
0.710 0.506 0.482 0.566

VGG [78] 0.790 0.611 0.528 0.630
FCSS [11] 0.891 0.721 0.610 0.740
FCSS [11] CC-DCTM 0.901 0.736 0.609 0.749

the SF optimizer2 with DSP-SIFT [77], VGG3 [78], UCN [9],
and FCSS [11] descriptor. Furthermore, geometric-invariant
methods including SLS [12], SSF [13], SegSIFT [80], Lin et
al. [17], DFF [7], GDSP [14], and GMat [50] were also evalu-
ated. Performance is measured on the TSS benchmark [29],
PF-WILLOW dataset [30], PF-PASCAL dataset [31], CUB-
200-2011 dataset [32], PASCAL-VOC dataset [33], and
Caltech-101 benchmark [34]. To validate the components
of DCTM, we examine the effects of dropping the continu-
ous optimization (wo/Cont.) and the coarse-to-fine scheme
(wo/C2F). To validate the components of CC-DCTM, we
also observe the results from removing the correspondence
consistency (wo/CC) (i.e., ρ = 1) and the confidence-guided
EAF (wo/CEF) (i.e., J = I).

In Sec. 4.2, we first analyze the convergence of DCTM
and CC-DCTM. In Sec. 4.3, we then examine the perfor-
mance of our methods compared to other matching methods
when combined with other descriptors. We then evaluate
our matching results compared to the state-of-the-art meth-
ods on various benchmarks in Sec. 4.4. We finally evaluate
the computation speed in Sec. 4.5.

2. For these experiments, we only utilized the optimizer used in
SF, namely the hierarchical dual-layer belief propagation [2], with the
alternative dense descriptors.

3. In VGG, ImageNet pretrained VGG-Net [78] from the bottom
conv1 to the conv3-4 layer was used with L2 normalization [79].
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(a) source image (b) target image (c) FCSS [11] (d) PF [30] (e) UCN [9] (f) SCNet [47] (g) DCTM (h) CC-DCTM
Fig. 7. Qualitative results on the TSS benchmark [29]. The source images were warped to the target images using correspondences.
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(d) Average
Fig. 8. Average matching accuracy with respect to endpoint error thresh-
old on the TSS benchmark [29].

4.2 Convergence Analysis

We first analyze the convergence of DCTM and CC-DCTM.
For a quantitative analysis, we measure flow accuracy
(described in the following subsection) on the TSS bench-
mark [29]. For each method, we measure the flow accu-
racy for different numbers of iterations up to the maxi-
mum number without early convergence termination. Fig.
6 shows the convergence analysis of DCTM and CC-DCTM
for varying numbers of image pyramid levelsM . The results
of ‘DCTM wo/Cont.’ reveal the significance of continuous
regularization in DCTM. With the continuous regulariza-
tion, our methods converge in 3 − 5 iterations. We also

TABLE 2
Matching accuracy compared to state-of-the-art correspondence

techniques on the TSS benchmark [29].

Methods FG3D JODS PASC. Avg.
SF [2] 0.632 0.509 0.360 0.500
DSP [37] 0.487 0.465 0.382 0.445
Zhou et al. [10] 0.721 0.514 0.436 0.556
Taniai et al. [29] 0.830 0.595 0.483 0.636
OHG [39] 0.875 0.708 0.729 0.771
SLS [12] 0.525 0.519 0.320 0.457
SSF [13] 0.687 0.344 0.370 0.467
SegSIFT [80] 0.612 0.421 0.331 0.457
Lin et al. [17] 0.406 0.283 0.161 0.283
DFF [7] 0.489 0.296 0.214 0.333
GDSP [14] 0.639 0.374 0.368 0.459
PF [30] 0.786 0.653 0.531 0.657
UCN [9] 0.853 0.672 0.511 0.679
FCSS [11] 0.830 0.653 0.494 0.660
GMat [50] 0.835 0.656 0.527 0.673
SCNet [47] 0.776 0.608 0.474 0.619
DCTM wo/Cont. 0.850 0.637 0.559 0.682
DCTM wo/C2F 0.859 0.684 0.550 0.698
DCTM 0.891 0.721 0.610 0.740
CC-DCTM wo/CC 0.883 0.716 0.607 0.735
CC-DCTM wo/CEF 0.886 0.730 0.613 0.743
CC-DCTM 0.901 0.736 0.609 0.749

observe that matching quality and convergence speed are
improved until M = 3 by enlarging the number of im-
age pyramid levels, but using larger pyramid levels (e.g.,
M = 4) reduces matching accuracy due to greater am-
biguity at the coarsest level. Based on these experiments,
we set M = 3. Thanks particularly to the correspondence
consistency and confidence-guided aggregation, CC-DCTM
exhibits improved robustness and convergence compared to
DCTM.

4.3 Effects of Feature Descriptors
We then analyze the effects of feature descriptors in DCTM
and CC-DCTM, and compare to other regularization or
matching methods such as SF [2], PF [30], SCNet [47], and
GMat [50] when combined with other descriptors4 using
DAISY [27], VGG [78], and FCSS [11]. Similar to Sec. 4.2, for
a quantitative analysis, we measure flow accuracy on the
Taniai benchmark [29]. Table 1 summarizes the state-of-the-
art methods with their features and matching algorithms,
and reports the matching accuracy. Matching methods with
deep CNN-based features have shown improved perfor-
mance over those with handcrafted features such as DSP-
SIFT [77] and DAISY [27]. When comparing the perfor-

4. These experiments use only the upright version of the descriptors
since no techniques exist for computing the descriptors efficiently with
respect to affine transformations.
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(a) source image (b) target image (c) SSF [13] (d) GDSP [14] (e) FCSS [11] (f) SCNet [47] (g) DCTM (h) CC-DCTM
Fig. 9. Qualitative results on the PF-WILLOW benchmark [30]. The source images were warped to the target images using correspondences.

mance with VGG [78], DCTM shows the state-of-the-art
performance except for GMat [50]. Note that GMat [50]
requires substantial additional training of CNNs for features
and regularizations, but DCTM is training-free and can
effectively handle geometric variations in more challenging
cases, which will be shown in the following experiments.
By using a strong feature such as FCSS [11] for semantic
correspondence, the performance of DCTM can be boosted,
as in SF [2] and PF [30]. Moreover, thanks to the affine-
varying features such as affine-FCSS, DCTM and CC-DCTM
exhibit highly improved robustness and convergence.

4.4 Matching Results

4.4.1 Results on TSS Benchmark
We evaluate DCTM and CC-DCTM on the TSS bench-
mark [29], which consists of 400 image pairs divided into
three groups: FG3DCar [81], JODS [82], and PASCAL [83].
As in [11], [29], flow accuracy was measured by computing
the proportion of foreground pixels with an absolute flow
endpoint error that is smaller than a threshold T , after
resizing images so that its larger dimension is 100 pixels.

Fig. 7 displays qualitative results for dense flow es-
timation. Fig. 8 plots the flow accuracy with respect to
error threshold T . Table 2 summarizes the matching ac-
curacy for state-of-the-art correspondence techniques (for
T = 5 pixels). Compared to methods based on handcrafted
features [7], [13], [14], CNN-based methods [9], [11], [29],
[47], [50] provide higher accuracy even though they do not
consider geometric variations. Existing geometry-invariant
methods [7], [13], [14], [17] cannot provide satisfactory
performance when matching evidence is measured with
handcrafted features. The method of Lin et al. [17] cannot
estimate reliable correspondences due to unstable sparse
correspondences. In contrast, our DCTM method provides
state-of-the-art performance in most cases thanks to its
discrete labeling optimization with continuous regulariza-
tion and affine-FCSS, while OHG [46] shows state-of-the-
art performance in some results. Furthermore, our CC-
DCTM demonstrates improved convergence and state-of-
the-art performance compared to the other methods. As
shown in the results of ‘CC-DCTM wo/CC’ and ‘CC-DCTM
wo/CEF’ in Table 2, the correspondence consistency and
the confidence-guided edge-aware filtering clearly elevate
matching accuracy.

4.4.2 Results on PF-WILLOW Benchmark
We also evaluate our method on the PF-WILLOW bench-
mark [30], which includes 10 object sub-classes with 10 key-
point annotations for each image. For the evaluation metric,

TABLE 3
Matching accuracy compared to state-of-the-art correspondence

techniques on the PF-WILLOW benchmark [30].

Methods PCK
α = 0.05 α = 0.1 α = 0.15

Zhou et al. [10] 0.197 0.524 0.664
SSF [13] 0.292 0.401 0.531
Lin et al. [17] 0.192 0.354 0.487
DFF [7] 0.241 0.362 0.510
GDSP [14] 0.242 0.487 0.512
PF [30] 0.284 0.568 0.682
UCN [9] 0.241 0.540 0.665
FCSS [11] 0.354 0.532 0.681
GMat [50] 0.312 0.586 0.712
SCNet [47] 0.359 0.601 0.692
DCTM wo/Cont. 0.353 0.552 0.687
DCTM wo/C2F 0.368 0.568 0.702
DCTM 0.381 0.610 0.721
CC-DCTM wo/CC 0.382 0.616 0.724
CC-DCTM wo/CEF 0.384 0.612 0.726
CC-DCTM 0.386 0.621 0.730

TABLE 4
Matching accuracy compared to state-of-the-art correspondence

techniques on the PF-PASCAL benchmark [31].

Methods mIoU PCK
α = 0.05 α = 0.1 α = 0.15

Zhou et al. [10] 0.310 0.181 0.410 0.624
SSF [13] 0.297 0.210 0.382 0.511
Lin et al. [17] 0.279 0.204 0.368 0.498
DFF [7] 0.347 0.214 0.372 0.522
GDSP [14] 0.482 0.222 0.412 0.524
PF [30] 0.511 0.242 0.451 0.640
UCN [9] 0.502 0.241 0.493 0.621
FCSS [11] 0.591 0.269 0.459 0.648
GMat [50] 0.579 0.231 0.462 0.638
SCNet [47] 0.534 0.264 0.470 0.643
DCTM wo/Cont. 0.602 0.240 0.461 0.641
DCTM wo/C2F 0.610 0.243 0.471 0.642
DCTM 0.616 0.258 0.476 0.644
CC-DCTM wo/CC 0.632 0.259 0.472 0.640
CC-DCTM wo/CEF 0.634 0.263 0.470 0.647
CC-DCTM 0.652 0.268 0.473 0.645

we use the probability of correct keypoint (PCK) between
flow-warped keypoints and the ground truth [8], [30]. The
warped keypoints are deemed to be correctly predicted if
they lie within α · max(hb, wb) pixels of the ground-truth
keypoints for α ∈ [0, 1], where hb and wb are the height
and width of the object bounding box, respectively. The
PCK values were measured for different correspondence
techniques in Table 3. Fig. 9 shows qualitative results for
dense flow estimation. Our DCTM method exhibits per-
formance competitive to the state-of-the-art correspondence
techniques. Our CC-DCTM method is especially effective in
cases of severe appearance and shape variations compared
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(a) source image (b) target image (c) VGG [78] (d) UCN [9] (e) GMat [50] (f) SCNet [47] (g) DCTM (h) CC-DCTM
Fig. 10. Qualitative results on the PF-PASCAL benchmark [31]. The source images were warped to the target images using correspondences.

(a) source image (b) target image (c) src. segments (d) FCSS [11] (e) SCNet [47] (f) DCTM (g) CC-DCTM (h) tar. segments
Fig. 11. Visualization of non-parametric semantic segmentation on the PF-PASCAL benchmark [31]. For visualization, color-coded source semantic
segments were warped to the target images using correspondences.

to other methods.

4.4.3 Results on PF-PASCAL Benchmark
We evaluate DCTM and CC-DCTM on the PF-PASCAL
benchmark [31], which contains 1,351 image pairs for 20
object categories with PASCAL keypoint annotations [84].
For the evaluation metric, we use the PCK between flow-
warped keypoints and the ground truth as in the experi-
ments on the PF-WILLOW benchmark [30]. Moreover, we
also apply our methods to the non-parametric semantic
segmentation task on the PF-PASCAL benchmark [31] in
a manner where segmentation masks are transferred from
source to target images using dense correspondences. For
quantitative evaluation, we adopted the mean intersection
over union (mIoU) between the predicted segmentations
and ground truths.

The PCK values and mIoU are measured for different
correspondence techniques in Table 4. Fig. 10 shows qualita-
tive results for dense flow estimation. Fig. 11 shows the pre-
dicted semantic segmentation using dense correspondences.
DCTM method exhibits outstanding performance compared
to state-of-the-art dense correspondence estimation meth-
ods. CC-DCTM method again is found to be reliable espe-
cially under challenging correspondence settings.

4.4.4 Results on CUB-200-2011 Benchmark
We evaluate our DCTM and CC-DCTM on the CUB-200-
2011 dataset [32], which contains 11,788 images of 200 bird
categories, with 15 parts annotated. We follow the exper-
imental configuration in [85], which utilizes 5,000 image
pairs from the validation subset as testing pairs. For the
evaluation metric, we use the PCK between flow-warped
keypoints and the ground truth [85], where a match is
considered correct if the predicted point is within α · Ld
of the mean diagonal length of the two images Ld.

The average PCK is measured for various descriptors
and correspondence techniques in Table 5. Fig. 12 visualizes
dense flow fields with keypoint annotation transfer. In this
experiment, we evaluate descriptors including SIFT [36],

TABLE 5
Matching accuracy compared to state-of-the-art correspondence

techniques on the CUB-200-2011 benchmark [32].

Methods Mean PCK
α = 0.01 α = 0.05 α = 0.10

NN w/VGG [78] 0.113 0.501 0.620
NN w/FCSS [11] 0.196 0.614 0.920
DSP [37] 0.096 0.429 0.701
DSP w/VGG [78] 0.093 0.456 0.724
WarpNet [85] 0.121 0.602 0.814
DCTM 0.212 0.657 0.924
CC-DCTM 0.245 0.668 0.892

TABLE 6
Matching accuracy on the PASCAL-VOC dataset [33].

Methods IoU PCK
α = 0.05 α = 0.1

Zhou et al. [10] - - 0.24
UCN [9] - 0.26 0.44
FCSS [11] 0.44 0.28 0.47
DSP w/ANet [43] 0.45 0.24 -
Deep Image Analogy [76] - - 0.21
DFF [7] 0.36 0.14 0.31
GDSP [14] 0.40 0.16 0.34
PF [30] 0.41 0.17 0.36
PF w/FCSS [11] 0.46 0.29 0.46
DCTM 0.48 0.32 0.50
CC-DCTM 0.50 0.31 0.52

VGG [78], and FCSS [11] using nearest neighbor (NN) search
on uniformly sampled keypoints on the foreground with
a stride of 8, following [85]. Our DCTM and CC-DCTM
show competitive performance compared to methods such
as DSP [37] and WarpNet [85].

4.4.5 Results on PASCAL-VOC Dataset
We conduct part segmentation experiments on the dataset
provided by [41], where the images are sampled from the
PASCAL-VOC parts dataset [33]. With human-annotated
part segments, we measure part matching accuracy using
the weighted intersection over union (IoU) score between
transferred segments and ground truths, with weights deter-
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Fig. 12. Visualizations of dense flow fields with keypoint annotation transfer on the CUB-200-2011 benchmark [32]: (from top to bottom) source and
target images with ground-truth keypoint annotations, and target images with warped keypoint annotations using correspondences from DCTM.

(a) src. image (b) tar. image (c) src. segm. (d) DFF [7] (e) GDSP [14] (f) Zhou [10] (g) FCSS [11] (h) DCTM (i) tar. segm.
Fig. 13. Visualizations of dense flow fields with color-coded part segments on the PASCAL-VOC part dataset [33]. The source part segments were
warped to the target images using correspondences.

(a) src. image (b) tar. image (c) src. mask (d) SIFT [36] (e) DASC [86] (f) MatN. [87] (g) LIFT [88] (h) CC-DCTM (i) tar. mask
Fig. 14. Visualizations of dense flow fields with mask transfer on the Caltech-101 dataset [34]. The source masks were warped to the target images
using correspondences.

TABLE 7
Matching accuracy on the Caltech-101 dataset [34].

Methods LT-ACC IoU LOC-ERR
PF [30] 0.78 0.50 0.25
VGG [78] 0.78 0.51 0.25
OHG [39] 0.81 0.55 0.19
FCSS [11] 0.80 0.50 0.21
PF w/FCSS [11] 0.83 0.52 0.22
DCTM 0.84 0.53 0.18
CC-DCTM 0.85 0.56 0.21

mined by the pixel area of each part. To evaluate alignment
accuracy, we measure the PCK metric using keypoint anno-
tations for the 12 rigid PASCAL classes [89]. Table 6 sum-
marizes the matching accuracy compared to state-of-the-art
correspondence methods. Fig. 13 visualizes estimated dense
flow with color-coded part segments. Our results are found
to yield the highest matching accuracy.

4.4.6 Results on Caltech-101 Dataset
Our next experiments are on mask transfer using the
Caltech-101 dataset [34]. Following the experimental pro-
tocol in [37], we randomly select 15 pairs of images for each
object class, and evaluate the matching accuracy with three
metrics: label transfer accuracy (LT-ACC) [3], the IoU metric,
and the localization error (LOC-ERR) of corresponding pixel
positions. Compared to the other benchmarks described
above, the Caltech-101 dataset provides image pairs from
a more diverse set of classes, enabling us to evaluate our
method under more general correspondence settings. Table
7 summarizes the matching accuracy compared to the state-
of-the-art correspondence methods. Fig. 14 visualizes esti-
mated dense flow fields with mask transfer. Our DCTM and
CC-DCTM clearly outperform the comparison techniques.

4.5 Computation Speed
In Fig. 15, we compare the computational speed of our
methods to state-of-the-art methods. We implemented our
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Fig. 15. Computation speed analysis of DCTM and CC-DCTM compared
to other state-of-the-art methods for 320× 240 images.

methods in Matlab/C++ on an Intel Core i7-3770 CPU at
3.40 GHz, and measured the runtime on a single CPU core.
The computation time for CC-DCTM is higher than that of
DCTM since it computes forward/backward affine fields for
confidence computation. Even though our methods need
more computation compared to some techniques, they ex-
hibit clearly better matching performance.

5 CONCLUSION

We presented a novel method that estimates dense affine
transformation fields through a discrete label optimization
in which the labels are iteratively updated via continuous
regularization. DCTM infers solutions from the continuous
space of affine transformations efficiently through constant-
time edge-aware filtering and the affine-FCSS descriptor.
The convergence and matching quality of DCTM are fur-
ther elevated by leveraging correspondence consistency and
confidence-guided edge-aware filtering. Further investiga-
tion may include examining how semantic correspondences
computed from our methods could benefit single-image 3D
reconstruction and instance-level object segmentation.
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