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1 DERIVATION OF DECOMPOSITION (10) FROM (9)
In this section, we describe the derivation of Eq. (10) from Eq. (9) in our paper. For efficient description, we also re-arrange
the sampling pattern (si,l, ti,l) to referenced-biased pairs (i, j) = (i, i+ ti,l − si,l). Ψ(i, j) is then approximated as follows:

Ψ̃(i, j) =

∑
i′,j′

ωi,i′(fi′ − Gi)(fj′ − Gi,j)√∑
i′
ωi,i′(fi′ − Gi)2

√∑
i′,j′

ωi,i′(fj′ − Gi,j)2
,

where Gi =
∑

i′ ωi,i′fi′ . Furthermore, Gi,j =
∑

i′,j′ ωi,i′fj′ which means weighted average of fj′ ∈ Fj with a guidance
image fi′ ∈ Fi. It is worth noting that the robustness of Ψ(s, t) can be still applied to Ψ̃(i, j) since their difference is just
weight factors.

We then decompose numerator and denominator in Ψ̃(i, j) after some arithmetic derivations. Firstly, the numerator in
Ψ̃(i, j) can be decomposed as ∑

i′,j′

ωi,i′fi′fj′ − Gi,j
∑
i′

ωi,i′fi′ − Gi
∑
i′,j′

ωi,i′fj′ + GiGi,j .

Secondly, the denominator in Ψ̃(i, j) can be decomposed as√∑
i′
ωi,i′f2i′ − 2Gi

∑
i′
ωi,i′fi′ + G2i

√∑
i′,j′

ωi,i′f2j′ − 2Gi,j
∑

i′,j′
ωi,i′fj′ + G2i,j .

With these derivations, Ψ̃(i, j) can be decomposed as

Gi,ij − Gi · Gi,j√
Gi2 − G2i ·

√
Gi,j2 − G2i,j

,

where Gi2 =
∑

i′ ωi,i′f
2
i′ , Gi,ij =

∑
i′,j′ ωi,i′fi′fj′ , and Gi,j2 =

∑
i′,j′ ωi,i′f

2
j′ .
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2 PERFORMANCE EVALUATION BETWEEN SYMMETRIC MEASURE Ψ(i, j) AND ASYMMETRIC MEASURE Ψ̃(i, j)
IN THE DASC DESCRIPTOR

This section provides qualitative performance evaluation between symmetric measure Ψ(i, j) and asymmetric measure
Ψ̃(i, j) in the DASC descriptor described in Sec. 6.2.5 of the paper. Fig. 1 and Fig. 2 show the comparison of the disparity
estimation for Dolls, Baby1, Books, Cloth3, Cloth4, and Moebius image pairs taken under exposure combination ‘0/0’ and
‘0/2’, respectively. As shown in Fig. 1 and Fig. 2, a performance gap between using the asymmetric measure Ψ̃(i, j) and
the symmetric measure Ψ(i, j) in the DASC descriptor is negligible, while using the asymmetric measure is much faster.

(a) Dolls (b) Baby1 (c) Books (d) Cloth3 (e) Cloth4 (f) Moebius

Fig. 1. Comparison of the disparity estimation for Dolls, Baby1, Books, Cloth3, Cloth4, and Moebius image pairs taken under exposure combination
‘0/0’. The first two rows shows the disparity maps obtained using the DASC descriptor with asymmetric and symmetric weights, where the winner-
takes-all (WTA) method is used for optimization. The third and fourth rows shows the disparity maps, where the Graph Cuts (GC) method is used
for optimization.
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(a) Dolls (b) Baby1 (c) Books (d) Cloth3 (e) Cloth4 (f) Moebius

Fig. 2. Comparison of the disparity estimation for Dolls, Baby1, Books, Cloth3, Cloth4, and Moebius image pairs taken under exposure combination
‘0/2’. The first two rows shows the disparity maps obtained using the DASC descriptor with asymmetric and symmetric weights, where the winner-
takes-all (WTA) method is used for optimization. The third and fourth rows shows the disparity maps, where the Graph Cuts (GC) method is used
for optimization.

Table 1 reports the computational complexity of the DASC descriptor for the brute-force implementation and the pro-
posed efficient implementation when using the symmetric and asymmetric weights. The DASC descriptor with asymmetric
weights provides a low computational complexity thanks to its efficient computational framework.

image size SIFT [1] DAISY [2] LSS [3] DASC* w/
sym.

DASC†w/
sym.

DASC* w/
asym.

DASC†w/
asym.

463× 370 130.3s 2.5s 31s 197.2s 9s 128s 5s

TABLE 1
Evaluation of the computational complexity. The brute-force and efficient implementation of the DASC is denoted as * and †, respectively. However,

the DASC descriptor with symmetric weights need more computational load compared to that of asymmetric weights.
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3 MULTI-MODAL AND MULTI-SPECTRAL FEATURE LEARNING

In this section we provide an example of training pairs, denoted as P = {(R1
m,R2

m, ym)|m = 1, ..., Nt}, used in the
sampling pattern learning where (R1,R2) are support window pairs, and Nt is the number of training samples. y is a
binary label that becomes 1 if two patches are matched or 0 otherwise. The training data set P was built from ground truth
correspondence maps for images captured under varying illumination conditions and/or with imaging devices [4], [5]. It
should be noted that since multi-modal and multi-spectral pairs do not have a ground truth dense correspondence, we
manually obtained ground truth displacement vectors [6]. In our experiments, we first established 50, 000 multi-spectral
and multi-modal support window pairs, as shown in Fig. 3. Among them, 5, 000 matching support window pairs (positive
samples, i.e., ym = 1) were randomly selected from true matching pairs, while 5, 000 non-matching support window pairs
(negative samples, i.e., ym = 0) were made by randomly selecting two support windows from different matching pairs.
Thus, in total, Nt = 10, 000 training support window pairs were built. In experiments, each training set is mutually used
to learn a sampling pattern. Specifically, the sampling pattern for Middlebury benchmark data set is learned from the
multi-spectral and multi-modal benchmark. In a similar way, the sampling patterns for multi-modal and multi-spectral
benchmark and MPI SINTEL benchmark are learned from MPI SINTEL benchmark and multi-modal and multi-spectral
benchmark, respectively.

(a) Middlebury benchmark (b) Multi-spectral and Multi-modal (c) MPI SINTEL benchmark

Fig. 3. Some examples of 50,000 support window training pairs built from Middlebury stereo benchmark, multi-spectral and multi-modal benchmark,
and MPI optical flow benchmark.
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Fig. 4 shows patch-wise receptive fields on learned sampling patterns used in our DASC descriptor. For an effective
visualization, we followed the practice used in [7]. We stacked all patch-wise receptive fields learnt from the Middlebury
stereo benchmark [4], the multi-modal and multi-spectral benchmark [6], [8], [9], [10], [11], and the MPI SINTEL benchmark
[5], respectively. A set of histogram bins corresponding to the patch of each patch-wise receptive field are incremented by
one, and they are finally normalized with the maximum value. The density of patch-wise receptive fields tends to be
concentrated on the center. In many literature, it has been shown that such a center-biased density distribution pooling in
the local feature provides the robustness [7], [12].
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(c) MPI SINTEL benchmark

Fig. 4. Visualization of patch-wise receptive fields of the DASC descriptor which are learned from Middlebury benchmark, multi-spectral and multi-
modal benchmark, and MPI SINTEL benchmark.
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4 NON-MAXIMAL SUPPRESSION IN WMSD
In this section, we visualize the non-maximal suppression scheme in weighted maximal self-dissimilarity (WMSD). For
feature response maps Ωi = {Ωk

i }, the local maxima are obtained by the non maximal suppression as shown in Fig. 6,
which compares Ωk

i to its 8 neighbors on the current scale and 18 neighbors on the (k + 1)th and (k − 1)th scales. Similar
to SIFT [1], a feature point i ∈ I ′ is detected only if {Ωk

i } has an extreme value compared to all of these neighbors, and its
scale ρi is defined with ρk. I ′ ⊂ I is a sparse discrete image domain.

28Example n = 3 

1k
i

sc
al
e k

i i

1k
i

Fig. 5. Feature detection with corresponding scales using the WMSD detector. For feature response maps Ω = {Ωk}, the extreme point is detected
by comparing to its 26 neighbours in 3× 3 for each pixel.
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5 MORE RESULTS

In this section, we first analyze the effects of the support window size and the feature dimension in our DASC descriptor
in Sec. 5.1. Then, we provide the additional results for our DASC descriptor and state-of-the-art descriptor-based methods
and area-based methods using the Middlebury stereo benchmark in Sec. 5.2, the multi-modal and multi-spectral image pair
benchmark in Sec. 5.3, and the MPI SINTEL optical flow benchmark in Sec. 5.5. Furthermore, we provide the additional
qualitative results for our DASC and GI-DASC descriptor and state-of-the-art geometry robust methods on DIML multi-
modal benchmark in Sec. 5.4. Finally, we conduct the additional results for multi-spectral RGB-NIR image pairs under
geometric variations in Sec. 5.6.
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5.1 Parameter Sensitivity Analysis
Fig. 6, Fig. 7, Fig. 8, and Fig. 9 intensively analyzed the performance of the DASC descriptor as varying associated
parameters, including support window size M , descriptor dimension Ldasc, patch size N , and the number of log-point
circular point Nc.

(a) 5× 5 (b) 9× 9 (c) 13× 13 (d) 17× 17 (e) 21× 21 (g) 25× 25 (e) 29× 29 (g) 33× 33

Fig. 6. Results of disparity estimation for Dolls and Wood1 image pairs taken under exposure combination ‘0/1’ by varying the support window size
M in the DASC descriptor. In our work, we used M = 31× 31 as the size of support window.

(a) 50 dim. (b) 100 dim. (c) 150 dim. (d) 200 dim. (e) 250 dim. (g) 300 dim. (e) 350 dim. (g) 400 dim.
Fig. 7. Results of disparity estimation for Dolls and Wood1 image pairs taken under exposure combination ‘0/1’ by varying the descriptor dimension
Ldasc in the DASC descriptor. In our work, we used Ldasc = 128 as the length of descriptor dimension.

(a) 3× 3 (b) 5× 5 (c) 7× 7 (d) 9× 9 (e) 11× 11 (g) 13× 13 (e) 15× 15 (g) 17× 17

Fig. 8. Results of disparity estimation for Dolls and Wood1 image pairs taken under exposure combination ‘0/1’ by varying the descriptor dimension
N in the DASC descriptor. In our work, we used N = 5× 5 as the length of descriptor dimension.
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(a) 1× 6 (b) 2× 12 (c) 3× 18 (d) 4× 24 (e) 5× 30 (g) 6× 36 (e) 7× 42 (g) 8× 48

Fig. 9. Results of disparity estimation for Dolls and Wood1 image pairs taken under exposure combination ‘0/1’ by varying the descriptor dimension
Nc in the DASC descriptor. In our work, we used Nc = 4× 36 as the length of descriptor dimension.
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5.2 Middlebury Stereo Benchmark
In Middlebury stereo benchmark, we used the Art, Baby1, Books, Bowling2, Cloth3, Cloth4, Dolls, Moebius, Reindeer, and
Wood1. In this supplementary materials, the results for bold image pairs are shown. Fig. 10 compare the disparity maps
estimated for stereo image pairs taken with an exposure combination ‘0/2’.

Fig. 10. Comparison of disparity estimation for Dolls, Moebius, Books, Baby1, and Reindeer image pairs taken under exposure combination 0/2.
(from left to right, top and bottom) Left color image, right color image, and disparity maps for the ground truth, ANCC [13], BRIEF [14], DAISY [2],
SIFT [1], LSS [3], DASC+RP, and DASC+LRP.
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5.3 Multi-modal and Multi-spectral Image Pairs
In experiments, the multi-modal and multi-spectral image pairs consist of RGB-NIR images, flash-noflash images, images
taken under different exposures, and blurred-clean images.

• RGB-NIR image pairs: epfl1, epfl2, epfl3, epfl4, epfl5, epfl6, lion, myrgbnir, orchid, stereo3, and stereo4.
• Flash-noflash image pairs: Dolls1, Dolls2, and Dolls3.
• Image pairs taken under different exposures: altar, BabyAtWindow, BabyOnGrass, balcony, books, ChristmasRider,

clouds, FeedingTime, flower, HighChair, LadyEating, lantern, mpi, PianoMan, room, SantasLittleHelper, street, and window.
• Blurred-clean image pairs: avisar, books1, books2, cars1, cars2, children, face1, face2, flowers, , numbers, and yemin.

In this supplementary materials, the results for bold image pairs are shown. Fig. 11, Fig. 12, Fig. 13, and Fig. 14 show the
warped color image and its corresponding 2-D flow fields for multi-modal and multi-spectral image pairs. For the results
of objective comparison, please refer to Table 2 in our paper.
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Fig. 11. Comparison of dense correspondence for RGB-NIR images including orchid, lion, and epfl6. (from top to bottom) Input image pairs, MI+SIFT
[13], RSNCC [6], BRIEF [14], DAISY [2], SIFT [1], LSS [3], DASC+RP, and DASC+LRP.
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Fig. 12. Comparison of dense correspondence for different exposure images including lantern, balcony, and room. (from top to bottom) Input image
pairs, MI+SIFT [13], RSNCC [6], BRIEF [14], DAISY [2], SIFT [1], LSS [3], DASC+RP, and DASC+LRP.
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Fig. 13. Comparison of dense correspondence for flash-noflash images including Dolls1, Dolls2, and Dolls3. (from top to bottom) Input image pairs,
MI+SIFT [13], RSNCC [6], BRIEF [14], DAISY [2], SIFT [1], LSS [3], DASC+RP, and DASC+LRP.
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Fig. 14. Comparison of dense correspondence for blurred images cars1, books1, and face1. (from top to bottom) Input image pairs, MI+SIFT [13],
RSNCC [6], BRIEF [14], DAISY [2], SIFT [1], LSS [3], DASC+RP, and DASC+LRP.
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5.4 DIML Multi-modal Benchmark
Since there have been no database with both photometric and geometric variations, we built the DIML multi-modal
benchmark. All databases were taken by SONY Cyber-Shot DSC-RX100 camera in a darkroom with the lighting booth
GretagMacbeth SpectraLight III. In terms of geometric deformations, we captured 10 geometry image sets by combining
geometric variations of viewpoint, scale, and rotation, and each image set consists of images taken under 5 different
photometric variation pairs including illumination, exposure, flash-noflash, blur, and noise. Therefore, the DIML multi-
modal benchmark consists of 100 images with the size of 1200 × 800. Furthermore, by following [15], we manually built
ground truth object annotation maps to evaluate the performance quantitatively, and computed the label transfer accuracy
(LTA) ALTA such that

ALTA =
1

Ta

∑
i∈I

1(ei 6= ai, ai > 0) (1)

where the ground-truth annotation is ai, estimated annotation is ei, and Ta =
∑

i∈I 1(ai > 0) is the number of labeled
pixels. This metric has been widely used in wide-baseline matching tasks [16]. Though ALTA does not measure a matching
performance in a pixel precision, it was shown in [15] that this metric is an excellent alternative that has a discriminative
power enough to evaluate the performance of descriptors in case that there are no ground truth correspondence maps
available. For one image from the reference geometry image set, we estimated visual correspondence maps with images
from other geometry image set, and then computed the LTA. Furthermore, visual correspondence maps were estimated
for each photometric pair. Here, matching results at occluded pixels should be excluded in the evaluation as they have no
corresponding pixels. We hence warped an image taken from near into an image taken at a distance, when computing the
LTA.

Fig. 15, Fig. 16, Fig. 17, and Fig. 18 show qualitative evaluation results on DIML multi-modal benchmark. Fig. 19 shows
the LTA error rates as varying photometric and geometric deformations.
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Fig. 15. Comparison of qualitative evaluation for photometric and geometric variations on DIML multi-modal benchmark [23] (img s0r1v0). The
results consist of warped color images and warped ground truth annotations.
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Fig. 16. Comparison of qualitative evaluation for photometric and geometric variations on DIML multi-modal benchmark [23] (img s1r0v0). The
results consist of warped color images and warped ground truth annotations.
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Fig. 17. Comparison of qualitative evaluation for photometric and geometric variations on DIML multi-modal benchmark [23] (img s2r0v0). The
results consist of warped color images and warped ground truth annotations.
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Fig. 18. Comparison of qualitative evaluation for photometric and geometric variations on DIML multi-modal benchmark [23] (img s3r0v0). The
results consist of warped color images and warped ground truth annotations.
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Fig. 19. Comparison of quantitative evaluation on DIML multi-modal benchmark. Each result represents the LTA in (1) for geometric (x-axis) and
photometric (y-axis) variations, respectively. The DASC outperforms conventional descriptors such as SIFT [1], DAISY [2], BRIEF [14], and LSS [3].
Interestingly, its accuracy is also higher than those of state-of-the-art geometry-invariant approaches including SID [18], SegSIFT [19], SegSID [19],
GPM [17], DSP [16], and SSF [20]. The GI-DASC descriptor shows the best performance under varying photometric and geometric conditions.
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5.5 MPI SINTEL Optical Flow Benchmark
In MPI SINTEL optical flow benchmark, the dataset consists of two kind of rendering frames, namely clean pass and final
pass, each containing 12 sequences with over 500 frames in total [5]. Fig. 20 shows visual comparison on the MPI SINTEL
benchmark, where the warped color image and its corresponding 2-D flow fields are depicted.

Fig. 20. Visual comparison on the MPI Sintel benchmark. (from left to right) Input image 1 and 2, flow field estimation results of LDOF [21] and
LDOF with the DASC+LRP descriptor. Note that the histogram of oriented gradient (HOG) [22] is used in the original LDOF [21].
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5.6 Dense Correspondence for Multi-spectral RGB-NIR Images Under Geometric Variations
Similar to [20], [23], [24], our GI-DASC approximately determines a relative scale using successive Gaussian smoothing
scheme, which might work in only a limited range of scale variation. As shown in Fig. 21, similar to an existing method,
GI-DASC also cannot deal with dramatically severe geometric variations. By leveraging an octave structure based on
sub-sampling scheme like SIFT [1], a wider range of scale may be covered.

(a) image 1 (b) image 2 (c) SSF [20] (d) GI-DASC
Fig. 21. Limitations for images under severe geometric variations.
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